Switch to: References

Add citations

You must login to add citations.
  1. Squares of Oppositions, Commutative Diagrams, and Galois Connections for Topological Spaces and Similarity Structures.Thomas Mormann - manuscript
    The aim of this paper is to elucidate the relationship between Aristotelian conceptual oppositions, commutative diagrams of relational structures, and Galois connections.This is done by investigating in detail some examples of Aristotelian conceptual oppositions arising from topological spaces and similarity structures. The main technical device for this endeavor is the notion of Galois connections of order structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Contrariety re-encountered: nonstandard contraries and internal negation **.Lloyd Humberstone - 2023 - Logic Journal of the IGPL 31 (6):1084-1134.
    This discussion explores the possibility of distinguishing a tighter notion of contrariety evident in the Square of Opposition, especially in its modal incarnations, than as that binary relation holding statements that cannot both be true, with or without the added rider ‘though can both be false’. More than one theorist has voiced the intuition that the paradigmatic contraries of the traditional Square are related in some such tighter way—involving the specific role played by negation in contrasting them—that distinguishes them from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Duality in Logic and Language.Lorenz Demey, and & Hans Smessaert - 2016 - Internet Encyclopedia of Philosophy.
    Duality in Logic and Language [draft--do not cite this article] Duality phenomena occur in nearly all mathematically formalized disciplines, such as algebra, geometry, logic and natural language semantics. However, many of these disciplines use the term ‘duality’ in vastly different senses, and while some of these senses are intimately connected to each other, others seem to be entirely … Continue reading Duality in Logic and Language →.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Was Lewis Carroll an Amazing Oppositional Geometer?Alessio Moretti - 2014 - History and Philosophy of Logic 35 (4):383-409.
    Some Carrollian posthumous manuscripts reveal, in addition to his famous ‘logical diagrams’, two mysterious ‘logical charts’. The first chart, a strange network making out of fourteen logical sentences a large 2D ‘triangle’ containing three smaller ones, has been shown equivalent—modulo the rediscovery of a fourth smaller triangle implicit in Carroll's global picture—to a 3D tetrahedron, the four triangular faces of which are the 3+1 Carrollian complex triangles. As it happens, such an until now very mysterious 3D logical shape—slightly deformed—has been (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The power of the hexagon.Jean-Yves Béziau - 2012 - Logica Universalis 6 (1-2):1-43.
    The hexagon of opposition is an improvement of the square of opposition due to Robert Blanché. After a short presentation of the square and its various interpretations, we discuss two important problems related with the square: the problem of the I-corner and the problem of the O-corner. The meaning of the notion described by the I-corner does not correspond to the name used for it. In the case of the O-corner, the problem is not a wrong-name problem but a no-name (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On the Historical Transformations of the Square of Opposition as Semiotic Object.Ioannis M. Vandoulakis & Tatiana Yu Denisova - 2020 - Logica Universalis 14 (1):7-26.
    In this paper, we would show how the logical object “square of opposition”, viewed as semiotic object, has been historically transformed since its appearance in Aristotle’s texts until the works of Vasiliev. These transformations were accompanied each time with a new understanding and interpretation of Aristotle’s original text and, in the last case, with a transformation of its geometric configuration. The initial textual codification of the theory of opposition in Aristotle’s works is transformed into a diagrammatic one, based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Metalogical Decorations of Logical Diagrams.Lorenz Demey & Hans Smessaert - 2016 - Logica Universalis 10 (2-3):233-292.
    In recent years, a number of authors have started studying Aristotelian diagrams containing metalogical notions, such as tautology, contradiction, satisfiability, contingency, strong and weak interpretations of contrariety, etc. The present paper is a contribution to this line of research, and its main aims are both to extend and to deepen our understanding of metalogical diagrams. As for extensions, we not only study several metalogical decorations of larger and less widely known Aristotelian diagrams, but also consider metalogical decorations of another type (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Why the Logical Hexagon?Alessio Moretti - 2012 - Logica Universalis 6 (1-2):69-107.
    The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Graded Structures of Opposition in Fuzzy Natural Logic.Petra Murinová - 2020 - Logica Universalis 14 (4):495-522.
    The main objective of this paper is devoted to two main parts. First, the paper introduces logical interpretations of classical structures of opposition that are constructed as extensions of the square of opposition. Blanché’s hexagon as well as two cubes of opposition proposed by Morreti and pairs Keynes–Johnson will be introduced. The second part of this paper is dedicated to a graded extension of the Aristotle’s square and Peterson’s square of opposition with intermediate quantifiers. These quantifiers are linguistic expressions such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • “Logical Lantern”: Analogue of the Square of Opposition for Propositions in V.I. Markin’s Universal Language for Traditional Positive Syllogistic Theories.Oksana Cherkashina - 2024 - Logica Universalis 18 (1):35-47.
    In this paper is constructed an analogue of the square of opposition for propositions about relations between two non-empty sets. Unlike the classical square of opposition, the proposed scheme uses all logically possible syllogistic constants, formulated in V.I. Markin’s universal language for traditional positive syllogistic theories. This scheme can be called “Logical lantern”. The basic constants of this language are representing the five basic relations between two non-empty sets: equity, strict inclusion, reversed strict inclusion, intersection and exclusion (considered are only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation