Switch to: References

Citations of:

The Logic of Biological Classification and the Foundations of Biomedical Ontology

In Dag Westerståhl (ed.), Logic, Methodology and Philosophy of Science. Proceedings of the 12th International Conference. King's College Publication. pp. 505-520 (2005)

Add citations

You must login to add citations.
  1. Methodology for semantic enhancement of intelligence data.Barry Smith, Tatiana Malyuta & William Mandrick - 2013 - CUBRC Report.
    What follows is a contribution to the horizontal integration of warfighter intelligence data as defined in Chairman of the Joint Chiefs of Staff Instruction J2 CJCSI 3340.02AL: -/- Horizontally integrating warfighter intelligence data improves the consumers’ production, analysis and dissemination capabilities. HI requires access (including discovery, search, retrieval, and display) to intelligence data among the warfighters and other producers and consumers via standardized services and architectures. These consumers include, but are not limited to, the combatant commands, Services, Defense agencies, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Publications by Barry Smith.Barry Smith - 2017 - Cosmos + Taxis 4 (4):67-104.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the application of formal principles to life science data: A case study in the Gene Ontology.Jacob Köhler, Anand Kumar & Barry Smith - 2004 - In Köhler Jacob, Kumar Anand & Smith Barry (eds.), Proceedings of DILS 2004 (Data Integration in the Life Sciences), (Lecture Notes in Bioinformatics 2994). Springer. pp. 79-94.
    Formal principles governing best practices in classification and definition have for too long been neglected in the construction of biomedical ontologies, in ways which have important negative consequences for data integration and ontology alignment. We argue that the use of such principles in ontology construction can serve as a valuable tool in error-detection and also in supporting reliable manual curation. We argue also that such principles are a prerequisite for the successful application of advanced data integration techniques such as ontology-based (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Investigating subsumption in DL-based terminologies: A case study in SNOMED CT.Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun - 2004 - In Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun (eds.), Proceedings of the First International Workshop on Formal Biomedical Knowledge Representation (KR-MED 2004). pp. 12-20.
    Formalisms such as description logics (DL) are sometimes expected to help terminologies ensure compliance with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) complies with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of SNOMED CT classes with respect to these principles. Our major results are: 31% of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Barry Smith an sich.Gerald J. Erion & Gloria Zúñiga Y. Postigo (eds.) - 2017 - Cosmos + Taxis.
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf Lüthe, Luc Schneider, Peter Simons, Wojciech Żełaniec, and Jan Woleński.
    Download  
     
    Export citation  
     
    Bookmark  
  • Coordinating dissent as an alternative to consensus classification: insights from systematics for bio-ontologies.Beckett Sterner, Joeri Witteveen & Nico Franz - 2020 - History and Philosophy of the Life Sciences 42 (1):1-25.
    The collection and classification of data into meaningful categories is a key step in the process of knowledge making. In the life sciences, the design of data discovery and integration tools has relied on the premise that a formal classificatory system for expressing a body of data should be grounded in consensus definitions for classifications. On this approach, exemplified by the realist program of the Open Biomedical Ontologies Foundry, progress is maximized by grounding the representation and aggregation of data on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophie und biomedizinische Forschung.Barry Smith & Bert R. E. Klagges - 2005 - Allgemeine Zeitschrift für Philosophie 30 (1):5–26.
    Die bahnbrechenden wissenschaftlichen Ergebnisse der letzten Jahre erzwingen eine neue philosophische Auseinandersetzung mit den Grundkategorien der Biologie und der benachbarten Disziplinen. Insbesondere die Anwendung neuer informationstechnischer Mittel in der biomedizinischen Forschung und die damit verbundene, kontinuierlich zunehmende Datenflut sowie die Notwendigkeit, ihrer Herr zu werden, erfordern ein konsequentes Nachdenken darüber, wie biologische Daten systematisiert und klassifiziert werden können. Dafür wiederum bedarf es robuster Theorien von Grundbegriffen wie Art, Spezies, Teil, Ganzes, Funktion, Prozess, Fragment, Sequenz, Expression, Grenze, Locus, Umwelt, System usw. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Introduction: What is Ontology for?Katherine Munn - 2008 - In Katherine Munn & Barry Smith (eds.), Applied Ontology: An Introduction. Walter de Gruyter. pp. 7-19.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Applied Ontology: An Introduction.Katherine Munn & Barry Smith (eds.) - 2008 - Frankfurt: ontos.
    Ontology is the philosophical discipline which aims to understand how things in the world are divided into categories and how these categories are related together. This is exactly what information scientists aim for in creating structured, automated representations, called 'ontologies,' for managing information in fields such as science, government, industry, and healthcare. Currently, these systems are designed in a variety of different ways, so they cannot share data with one another. They are often idiosyncratically structured, accessible only to those who (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Basic Formal Ontology for bioinformatics.Barry Smith, Anand Kumar & Thomas Bittner - 2005 - IFOMIS Reports.
    Two senses of ‘ontology’ can be distinguished in the current literature. First is the sense favored by information scientists, who view ontologies as software implementations designed to capture in some formal way the consensus conceptualization shared by those working on information systems or databases in a given domain. [Gruber 1993] Second is the sense favored by philosophers, who regard ontologies as theories of different types of entities (objects, processes, relations, functions) [Smith 2003]. Where information systems ontologists seek to maximize reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on logic for process descriptions in ontological reasoning: A Drug Interaction Ontology case study.Mitsuhiro Okada, Barry Smith & Yutaro Sugimoto - 2008 - In InterOntology. Proceedings of the First Interdisciplinary Ontology Meeting, Tokyo, Japan, 26-27 February 2008. Tokyo: Keio University Press. pp. 127-138.
    We present some ideas on logical process descriptions, using relations from the DIO (Drug Interaction Ontology) as examples and explaining how these relations can be naturally decomposed in terms of more basic structured logical process descriptions using terms from linear logic. In our view, the process descriptions are able to clarify the usual relational descriptions of DIO. In particular, we discuss the use of logical process descriptions in proving linear logical theorems. Among the types of reasoning supported by DIO one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond concepts: Ontology as reality representation.Barry Smith - 2004 - In Achille C. Varzi & Laure Vieu (eds.), Formal Ontology in Information Systems (FOIS). pp. 1-12.
    The present essay is devoted to the application of ontology in support of research in the natural sciences. It defends the thesis that ontologies developed for such purposes should be understood as having as their subject matter, not concepts, but rather the universals and particulars which exist in reality and are captured in scientific laws. We outline the benefits of a view along these lines by showing how it yields rigorous formal definitions of the foundational relations used in many influential (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Formalizing UMLS Relations Using Semantic Partitions in the Context of a Task-Based Clinical Guidelines Model.Anand Kumar, Matteo Piazza, Barry Smith, Silvana Quaglini & Mario Stefanelli - 2004 - In IFOMIS Reports. Saarbrücken: IFOMIS.
    An important part of the Unified Medical Language System (UMLS) is its Semantic Network, consisting of 134 Semantic Types connected to each other by edges formed by one or more of 54 distinct Relation Types. This Network is however for many purposes overcomplex, and various groups have thus made attempts at simplification. Here we take this work further by simplifying the relations which involve the three Semantic Types – Diagnostic Procedure, Laboratory Procedure and Therapeutic or Preventive Procedure. We define operators (...)
    Download  
     
    Export citation  
     
    Bookmark