Switch to: References

Add citations

You must login to add citations.
  1. Causal inference in biomedical research.Tudor M. Baetu - 2020 - Biology and Philosophy 35 (4):1-19.
    Current debates surrounding the virtues and shortcomings of randomization are symptomatic of a lack of appreciation of the fact that causation can be inferred by two distinct inference methods, each requiring its own, specific experimental design. There is a non-statistical type of inference associated with controlled experiments in basic biomedical research; and a statistical variety associated with randomized controlled trials in clinical research. I argue that the main difference between the two hinges on the satisfaction of the comparability requirement, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy and the microbe: a balancing act. [REVIEW]Maureen A. O’Malley - 2013 - Biology and Philosophy 28 (2):153-159.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Inferential Pluralism in Causal Reasoning from Randomized Experiments.Tudor M. Baetu - 2022 - Acta Biotheoretica 70 (4):1-20.
    Causal pluralism can be defended not only in respect to causal concepts and methodological guidelines, but also at the finer-grained level of causal inference from a particular source of evidence for causation. An argument for this last variety of pluralism is made based on an analysis of causal inference from randomized experiments (RCTs). Here, the causal interpretation of a statistically significant association can be established via multiple paths of reasoning, each relying on different assumptions and providing distinct elements of information (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gemmules and Elements: On Darwin’s and Mendel’s Concepts and Methods in Heredity.Ute Deichmann - 2010 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 41 (1):85-112.
    Inheritance and variation were a major focus of Charles Darwin’s studies. Small inherited variations were at the core of his theory of organic evolution by means of natural selection. He put forward a developmental theory of heredity (pangenesis) based on the assumption of the existence of material hereditary particles. However, unlike his proposition of natural selection as a new mechanism for evolutionary change, Darwin’s highly speculative and contradictory hypotheses on heredity were unfruitful for further research. They attempted to explain many (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The resisted rise of randomisation in experimental design: British agricultural science, c.1910–1930.Dominic Berry - 2015 - History and Philosophy of the Life Sciences 37 (3):242-260.
    The most conspicuous form of agricultural experiment is the field trial, and within the history of such trials, the arrival of the randomised control trial is considered revolutionary. Originating with R.A. Fisher within British agricultural science in the 1920s and 30s, the RCT has since become one of the most prodigiously used experimental techniques throughout the natural and social sciences. Philosophers of science have already scrutinised the epistemological uniqueness of RCTs, undermining their status as the ‘gold standard’ in experimental design. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s–1980s.Mathias Grote - 2017 - History and Philosophy of the Life Sciences 40 (1):11.
    Microbial diversity has become a leitmotiv of contemporary microbiology, as epitomized in the concept of the microbiome, with significant consequences for the classification of microbes. In this paper, I contrast microbiology’s current diversity ideal with its influential predecessor in the twentieth century, that of purity, as epitomized in Robert Koch’s bacteriological culture methods. Purity and diversity, the two polar opposites with regard to making sense of the microbial world, have been operationalized in microbiological practice by tools such as the “clean” (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On pain experience, multidisciplinary integration and the level-laden conception of science.Tudor Baetu - 2017 - Synthese:1-20.
    Multidisciplinary models aggregating ‘lower-level’ biological and ‘higher-level’ psychological and social determinants of a phenomenon raise a puzzle. How is the interaction between the physical, the psychological and the social conceptualized and explained? Using biopsychosocial models of pain as an illustration, I argue that these models are in fact level-neutral compilations of empirical findings about correlated and causally relevant factors, and as such they neither assume, nor entail a conceptual or ontological stratification into levels of description, explanation or reality. If inter-level (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.Dominic Berry - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):25-37.
    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The ‘Big Picture’: The Problem of Extrapolation in Basic Research.Tudor M. Baetu - 2016 - British Journal for the Philosophy of Science 67 (4):941-964.
    Both clinical research and basic science rely on the epistemic practice of extrapolation from surrogate models, to the point that explanatory accounts presented in review papers and biology textbooks are in fact composite pictures reconstituted from data gathered in a variety of distinct experimental setups. This raises two new challenges to previously proposed mechanistic-similarity solutions to the problem of extrapolation: one pertaining to the absence of mechanistic knowledge in the early stages of research and the second to the large number (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • New perspectives in the history of twentieth-century life sciences: historical, historiographical and epistemological themes.Robert Meunier & Kärin Nickelsen - 2018 - History and Philosophy of the Life Sciences 40 (1):19.
    The history of twentieth-century life sciences is not exactly a new topic. However, in view of the increasingly rapid development of the life sciences themselves over the past decades, some of the well-established narratives are worth revisiting. Taking stock of where we stand on these issues was the aim of a conference in 2015, entitled “Perspectives for the History of Life Sciences”. The papers in this topical collection are based on work presented and discussed at and around this meeting. Just (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Temporalities of reproduction: practices and concepts from the eighteenth to the early twenty-first century.Bettina Bock von Wülfingen, Christina Brandt, Susanne Lettow & Florence Vienne - 2015 - History and Philosophy of the Life Sciences 37 (1):1-16.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Bruno to Brünn; or the Pasteurization of Mendelian genetics.Dominic Berry - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 48:280-286.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s–1980s.Mathias Grote - 2018 - History and Philosophy of the Life Sciences 40 (1):1-30.
    Microbial diversity has become a leitmotiv of contemporary microbiology, as epitomized in the concept of the microbiome, with significant consequences for the classification of microbes. In this paper, I contrast microbiology’s current diversity ideal with its influential predecessor in the twentieth century, that of purity, as epitomized in Robert Koch’s bacteriological culture methods. Purity and diversity, the two polar opposites with regard to making sense of the microbial world, have been operationalized in microbiological practice by tools such as the “clean” (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Charting the history of agricultural experiments.Giuditta Parolini - 2015 - History and Philosophy of the Life Sciences 37 (3):231-241.
    Agricultural experimentation is a world in constant evolution, spanning multiple scientific domains and affecting society at large. Even though the questions underpinning agricultural experiments remain largely the same, the instruments and practices for answering them have changed constantly during the twentieth century with the advent of new disciplines like molecular biology, genomics, statistics, and computing. Charting this evolving reality requires a mapping of the affinities and antinomies at work within the realm of agricultural research, and a consideration of the practices, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Models and the mosaic of scientific knowledge. The case of immunology.Tudor M. Baetu - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 45 (1):49-56.
    A survey of models in immunology is conducted and distinct kinds of models are characterized based on whether models are material or conceptual, the distinctiveness of their epistemic purpose, and the criteria for evaluating the goodness of a model relative to its intended purpose. I argue that the diversity of models in interdisciplinary fields such as immunology reflects the fact that information about the phenomena of interest is gathered from different sources using multiple methods of investigation. To each model is (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The many lives of experiments: Wilhelm Johannsen, selection, hybridization, and the complex relations of genes and characters.Robert Meunier - 2016 - History and Philosophy of the Life Sciences 38 (1):42-64.
    In addition to his experiments on selection in pure lines, Wilhelm Johannsen performed less well-known hybridisation experiments with beans. This article describes these experiments and discusses Johannsen’s motivations and interpretations, in the context of developments in early genetics. I will show that Johannsen first presented the hybridisation experiments as an additional control for his selection experiments. The latter were dedicated to investigating heredity with respect to debates concerning the significance of natural selection of continuous variation for evolution. In the course (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Chance, Experimental Reproducibility, and Mechanistic Regularity.Tudor M. Baetu - 2013 - International Studies in the Philosophy of Science 27 (3):253-271.
    Examples from the sciences showing that mechanisms do not always succeed in producing the phenomena for which they are responsible have led some authors to conclude that the regularity requirement can be eliminated from characterizations of mechanisms. In this article, I challenge this conclusion and argue that a minimal form of regularity is inextricably embedded in examples of elucidated mechanisms that have been shown to be causally responsible for phenomena. Examples of mechanistic explanations from the sciences involve mechanisms that have (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations