Switch to: References

Citations of:

Analytic ideals

Bulletin of Symbolic Logic 2 (3):339-348 (1996)

Add citations

You must login to add citations.
  1. Analytic ideals and cofinal types.Alain Louveau & Boban Velickovi - 1999 - Annals of Pure and Applied Logic 99 (1-3):171-195.
    We describe a new way to construct large subdirectly irreducibles within an equational class of algebras. We use this construction to show that there are forbidden geometries of multitraces for finite algebras in residually small equational classes. The construction is first applied to show that minimal equational classes generated by simple algebras of types 2, 3 or 4 are residually small if and only if they are congruence modular. As a second application of the construction we characterize residually small locally (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • New directions in descriptive set theory.Alexander S. Kechris - 1999 - Bulletin of Symbolic Logic 5 (2):161-174.
    §1. I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are ℝn, ℂn, Hilbert space and more generally all separable Banach spaces, the Cantor space 2ℕ, the Baire space ℕℕ, the infinite symmetric group S∞, the unitary group, the group of measure preserving transformations of the unit interval, etc.In this theory sets are (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Forcing with quotients.Michael Hrušák & Jindřich Zapletal - 2008 - Archive for Mathematical Logic 47 (7-8):719-739.
    We study an extensive connection between quotient forcings of Borel subsets of Polish spaces modulo a σ-ideal and quotient forcings of subsets of countable sets modulo an ideal.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Katětov order on Borel ideals.Michael Hrušák - 2017 - Archive for Mathematical Logic 56 (7-8):831-847.
    We study the Katětov order on Borel ideals. We prove two structural theorems, one for Borel ideals, the other for analytic P-ideals. We isolate nine important Borel ideals and study the Katětov order among them. We also present a list of fundamental open problems concerning the Katětov order on Borel ideals.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Actions by the classical Banach spaces.G. Hjorth - 2000 - Journal of Symbolic Logic 65 (1):392-420.
    The study of continuous group actions is ubiquitous in mathematics, and perhaps the most general kinds of actions for which we can hope to prove theorems in just ZFC are those where a Polish group acts on a Polish space.For this general class we can find works such as [29] that build on ideas from ergodic theory and examine actions of locally compact groups in both the measure theoretic and topological contexts. On the other hand a text in model theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Basis problem for turbulent actions I: Tsirelson submeasures.Ilijas Farah - 2001 - Annals of Pure and Applied Logic 108 (1-3):189-203.
    We use modified Tsirelson's spaces to prove that there is no finite basis for turbulent Polish group actions. This answers a question of Hjorth and Kechris 329–346; Hjorth, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Section 3.4.3).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Eggleston's dichotomy for characterized subgroups and the role of ideals.Pratulananda Das & Ayan Ghosh - 2023 - Annals of Pure and Applied Logic 174 (8):103289.
    Download  
     
    Export citation  
     
    Bookmark  
  • Isometry of Polish metric spaces.John D. Clemens - 2012 - Annals of Pure and Applied Logic 163 (9):1196-1209.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Representations of ideals in polish groups and in Banach spaces.Piotr Borodulin–Nadzieja, Barnabás Farkas & Grzegorz Plebanek - 2015 - Journal of Symbolic Logic 80 (4):1268-1289.
    We investigate ideals of the form {A⊆ω: Σn∈Axnis unconditionally convergent} where n∈ωis a sequence in a Polish group or in a Banach space. If an ideal onωcan be seen in this form for some sequence inX, then we say that it is representable inX.After numerous examples we show the following theorems: An ideal is representable in a Polish Abelian group iff it is an analytic P-ideal. An ideal is representable in a Banach space iff it is a nonpathological analytic P-ideal.We (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Analytic ideals and their applications.Sławomir Solecki - 1999 - Annals of Pure and Applied Logic 99 (1-3):51-72.
    We study the structure of analytic ideals of subsets of the natural numbers. For example, we prove that for an analytic ideal I, either the ideal {X (Ω × Ω: En X ({0, 1,…,n} × Ω } is Rudin-Keisler below I, or I is very simply induced by a lower semicontinuous submeasure. Also, we show that the class of ideals induced in this manner by lsc submeasures coincides with Polishable ideals as well as analytic P-ideals. We study this class of (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations