Switch to: References

Add citations

You must login to add citations.
  1. Pathology of submeasures and $$F_{\sigma }$$ ideals.Jorge Martínez, David Meza-Alcántara & Carlos Uzcátegui - 2024 - Archive for Mathematical Logic 63 (7):941-967.
    We address some phenomena about the interaction between lower semicontinuous submeasures on $${\mathbb {N}}$$ N and $$F_{\sigma }$$ F σ ideals. We analyze the pathology degree of a submeasure and present a method to construct pathological $$F_{\sigma }$$ F σ ideals. We give a partial answers to the question of whether every nonpathological tall $$F_{\sigma }$$ F σ ideal is Katětov above the random ideal or at least has a Borel selector. Finally, we show a representation of nonpathological $$F_{\sigma }$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Katětov order between Hindman, Ramsey and summable ideals.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2024 - Archive for Mathematical Logic 63 (7):859-876.
    A family $$\mathcal {I}$$ I of subsets of a set X is an ideal on X if it is closed under taking subsets and finite unions of its elements. An ideal $$\mathcal {I}$$ I on X is below an ideal $$\mathcal {J}$$ J on Y in the Katětov order if there is a function $$f{: }Y\rightarrow X$$ f : Y → X such that $$f^{-1}[A]\in \mathcal {J}$$ f - 1 [ A ] ∈ J for every $$A\in \mathcal {I}$$ A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities.Jaroslav Šupina - 2023 - Archive for Mathematical Logic 62 (1):87-112.
    We investigate several ideal versions of the pseudointersection number \(\mathfrak {p}\), ideal slalom numbers, and associated topological spaces with the focus on selection principles. However, it turns out that well-known pseudointersection invariant \(\mathtt {cov}^*({\mathcal I})\) has a crucial influence on the studied notions. For an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal J})\) introduced by Borodulin-Nadzieja and Farkas (Arch. Math. Logic 51:187–202, 2012), and an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal I},{\mathcal J})\) introduced by Repický (Real Anal. Exchange 46:367–394, 2021), we have $$\begin{aligned} \min \{\mathfrak (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Maximal almost disjoint families, determinacy, and forcing.Karen Bakke Haga, David Schrittesser & Asger Törnquist - 2021 - Journal of Mathematical Logic 22 (1).
    We study the notion of ????-MAD families where ???? is a Borel ideal on ω. We show that if ???? is any finite or countably iterated Fubini product of the ideal of finite sets Fin, then there are no analytic...
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Maximal almost disjoint families, determinacy, and forcing.Karen Bakke Haga, David Schrittesser & Asger Törnquist - 2022 - Journal of Mathematical Logic 22 (1):2150026.
    We study the notion of [Formula: see text]-MAD families where [Formula: see text] is a Borel ideal on [Formula: see text]. We show that if [Formula: see text] is any finite or countably iterated Fubini product of the ideal of finite sets [Formula: see text], then there are no analytic infinite [Formula: see text]-MAD families, and assuming Projective Determinacy and Dependent Choice there are no infinite projective [Formula: see text]-MAD families; and under the full Axiom of Determinacy [Formula: see text][Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ramsey type properties of ideals.M. Hrušák, D. Meza-Alcántara, E. Thümmel & C. Uzcátegui - 2017 - Annals of Pure and Applied Logic 168 (11):2022-2049.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Josefson–Nissenzweig theorem and filters on $$\omega $$.Witold Marciszewski & Damian Sobota - 2024 - Archive for Mathematical Logic 63 (7):773-812.
    For a free filter F on $$\omega $$ ω, endow the space $$N_F=\omega \cup \{p_F\}$$ N F = ω ∪ { p F }, where $$p_F\not \in \omega $$ p F ∉ ω, with the topology in which every element of $$\omega $$ ω is isolated whereas all open neighborhoods of $$p_F$$ p F are of the form $$A\cup \{p_F\}$$ A ∪ { p F } for $$A\in F$$ A ∈ F. Spaces of the form $$N_F$$ N F constitute the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On extendability to $$F_\sigma $$ ideals.Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any \(F_\sigma \) ideal and such that it is not Katětov above the ideal \(\mathrm {conv}\).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On extendability to Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideals. [REVIEW]Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7-8):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideal and such that it is not Katětov above the ideal conv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {conv}$$\end{document}.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bases and borel selectors for tall families.Jan Grebík & Carlos Uzcátegui - 2019 - Journal of Symbolic Logic 84 (1):359-375.
    Given a family${\cal C}$of infinite subsets of${\Bbb N}$, we study when there is a Borel function$S:2^{\Bbb N} \to 2^{\Bbb N} $such that for every infinite$x \in 2^{\Bbb N} $,$S\left \in {\Cal C}$and$S\left \subseteq x$. We show that the family of homogeneous sets as given by the Nash-Williams’ theorem admits such a Borel selector. However, we also show that the analogous result for Galvin’s lemma is not true by proving that there is an$F_\sigma $tall ideal on${\Bbb N}$without a Borel selector. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing existence of certain ultrafilters.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2022 - Annals of Pure and Applied Logic 173 (9):103157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ways of Destruction.Barnabás Farkas & Lyubomyr Zdomskyy - 2022 - Journal of Symbolic Logic 87 (3):938-966.
    We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$ $+$ -destroys $\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$ -positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y| \omega $ ; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$ -generic real $+$ -destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$ $+$ -destroys $\mathcal {I}$ ; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the structure of Borel ideals in-between the ideals ED and Fin ⊗ Fin in the Katětov order.Pratulananda Das, Rafał Filipów, Szymon Gła̧b & Jacek Tryba - 2021 - Annals of Pure and Applied Logic 172 (8):102976.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • HL ideals and Sacks indestructible ultrafilters.David Chodounský, Osvaldo Guzmán & Michael Hrušák - 2024 - Annals of Pure and Applied Logic 175 (1):103326.
    Download  
     
    Export citation  
     
    Bookmark