Switch to: References

Add citations

You must login to add citations.
  1. Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Large Cardinals, Inner Models, and Determinacy: An Introductory Overview.P. D. Welch - 2015 - Notre Dame Journal of Formal Logic 56 (1):213-242.
    The interaction between large cardinals, determinacy of two-person perfect information games, and inner model theory has been a singularly powerful driving force in modern set theory during the last three decades. For the outsider the intellectual excitement is often tempered by the somewhat daunting technicalities, and the seeming length of study needed to understand the flow of ideas. The purpose of this article is to try and give a short, albeit rather rough, guide to the broad lines of development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Consistency Strength of $$\aleph{\omega}$$ and $$\aleph{{\omega}_1}$$ Being Rowbottom Cardinals Without the Axiom of Choice.Arthur W. Apter & Peter Koepke - 2006 - Archive for Mathematical Logic 45 (6):721-737.
    We show that for all natural numbers n, the theory “ZF + DC $_{\aleph_n}$ + $\aleph_{\omega}$ is a Rowbottom cardinal carrying a Rowbottom filter” has the same consistency strength as the theory “ZFC + There exists a measurable cardinal”. In addition, we show that the theory “ZF + $\aleph_{\omega_1}$ is an ω 2-Rowbottom cardinal carrying an ω 2-Rowbottom filter and ω 1 is regular” has the same consistency strength as the theory “ZFC + There exist ω 1 measurable cardinals”. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objectivity over objects: A case study in theory formation.Kai Hauser - 2001 - Synthese 128 (3):245 - 285.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A renaissance of empiricism in the recent philosophy of mathematics.Imre Lakatos - 1976 - British Journal for the Philosophy of Science 27 (3):201-223.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Hilbert's philosophy of mathematics.Marcus Giaquinto - 1983 - British Journal for the Philosophy of Science 34 (2):119-132.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why is Cantor’s Absolute Inherently Inaccessible?Stathis Livadas - 2020 - Axiomathes 30 (5):549-576.
    In this article, as implied by the title, I intend to argue for the unattainability of Cantor’s Absolute at least in terms of the proof-theoretical means of set-theory and of the theory of large cardinals. For this reason a significant part of the article is a critical review of the progress of set-theory and of mathematical foundations toward resolving problems which to the one or the other degree are associated with the concept of infinity especially the one beyond that of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • More on full reflection below $${\aleph_\omega}$$.James Cummings & Dorshka Wylie - 2010 - Archive for Mathematical Logic 49 (6):659-671.
    Jech and Shelah in J Symb Log, 55, 822–830 (1990) studied full reflection below ${\aleph_\omega}$ , and produced a model in which the extent of full reflection is maximal in a certain sense. We produce a model in which full reflection is maximised in a different direction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a problem of Woodin.Arthur W. Apter - 2000 - Archive for Mathematical Logic 39 (4):253-259.
    A question of Woodin asks if $\kappa$ is strongly compact and GCH holds for all cardinals $\delta < \kappa$ , then must GCH hold everywhere. We get a negative answer to Woodin's question in the context of the negation of the Axiom of Choice.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
    We establish two theorems concerning strongly compact cardinals and universal indestructibility for degrees of supercompactness. In the first theorem, we show that universal indestructibility for degrees of supercompactness in the presence of a strongly compact cardinal is consistent with the existence of a proper class of measurable cardinals. In the second theorem, we show that universal indestructibility for degrees of supercompactness is consistent in the presence of two non-supercompact strongly compact cardinals, each of which exhibits a significant amount of indestructibility (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is the Continuum Hypothesis a definite mathematical problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.
    We prove three theorems concerning Laver indestructibility, strong compactness, and measurability. We then state some related open questions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.
    We show that it is consistent, relative to n ∈ ω supercompact cardinals, for the strongly compact and measurable Woodin cardinals to coincide precisely. In particular, it is consistent for the first n strongly compact cardinals to be the first n measurable Woodin cardinals, with no cardinal above the n th strongly compact cardinal being measurable. In addition, we show that it is consistent, relative to a proper class of supercompact cardinals, for the strongly compact cardinals and the cardinals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Extending the Non-extendible: Shades of Infinity in Large Cardinals and Forcing Theories.Stathis Livadas - 2018 - Axiomathes 28 (5):565-586.
    This is an article whose intended scope is to deal with the question of infinity in formal mathematics, mainly in the context of the theory of large cardinals as it has developed over time since Cantor’s introduction of the theory of transfinite numbers in the late nineteenth century. A special focus has been given to this theory’s interrelation with the forcing theory, introduced by P. Cohen in his lectures of 1963 and further extended and deepened since then, which leads to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Level by level inequivalence beyond measurability.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (7-8):707-712.
    We construct models containing exactly one supercompact cardinal in which level by level inequivalence between strong compactness and supercompactness holds. In each model, above the supercompact cardinal, there are finitely many strongly compact cardinals, and the strongly compact and measurable cardinals precisely coincide.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are There Absolutely Unsolvable Problems? Godel's Dichotomy.S. Feferman - 2006 - Philosophia Mathematica 14 (2):134-152.
    This is a critical analysis of the first part of Go¨del’s 1951 Gibbs lecture on certain philosophical consequences of the incompleteness theorems. Go¨del’s discussion is framed in terms of a distinction between objective mathematics and subjective mathematics, according to which the former consists of the truths of mathematics in an absolute sense, and the latter consists of all humanly demonstrable truths. The question is whether these coincide; if they do, no formal axiomatic system (or Turing machine) can comprehend the mathematizing (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Levy and set theory.Akihiro Kanamori - 2006 - Annals of Pure and Applied Logic 140 (1):233-252.
    Azriel Levy did fundamental work in set theory when it was transmuting into a modern, sophisticated field of mathematics, a formative period of over a decade straddling Cohen’s 1963 founding of forcing. The terms “Levy collapse”, “Levy hierarchy”, and “Levy absoluteness” will live on in set theory, and his technique of relative constructibility and connections established between forcing and definability will continue to be basic to the subject. What follows is a detailed account and analysis of Levy’s work and contributions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Against the Judgment-Dependence of Mathematics and Logic.Alexander Paseau - 2012 - Erkenntnis 76 (1):23-40.
    Although the case for the judgment-dependence of many other domains has been pored over, surprisingly little attention has been paid to mathematics and logic. This paper presents two dilemmas for a judgment-dependent account of these areas. First, the extensionality-substantiality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the substantiality condition (roughly: non-vacuous specification). Second, the extensionality-extremality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the extremality condition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On some questions concerning strong compactness.Arthur W. Apter - 2012 - Archive for Mathematical Logic 51 (7-8):819-829.
    A question of Woodin asks if κ is strongly compact and GCH holds below κ, then must GCH hold everywhere? One variant of this question asks if κ is strongly compact and GCH fails at every regular cardinal δ < κ, then must GCH fail at some regular cardinal δ ≥ κ? Another variant asks if it is possible for GCH to fail at every limit cardinal less than or equal to a strongly compact cardinal κ. We get a negative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the consistency strength of level by level inequivalence.Arthur W. Apter - 2017 - Archive for Mathematical Logic 56 (7-8):715-723.
    We show that the theories “ZFC \ There is a supercompact cardinal” and “ZFC \ There is a supercompact cardinal \ Level by level inequivalence between strong compactness and supercompactness holds” are equiconsistent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • O tzw. programie Gödla.Krzysztof Wójtowicz - 2001 - Zagadnienia Filozoficzne W Nauce 29.
    Download  
     
    Export citation  
     
    Bookmark   1 citation