Switch to: References

Add citations

You must login to add citations.
  1. Algebraic Logic Perspective on Prucnal’s Substitution.Alex Citkin - 2016 - Notre Dame Journal of Formal Logic 57 (4):503-521.
    A term td is called a ternary deductive term for a variety of algebras V if the identity td≈r holds in V and ∈θ yields td≈td for any A∈V and any principal congruence θ on A. A connective f is called td-distributive if td)≈ f,…,td). If L is a propositional logic and V is a corresponding variety that has a TD term td, then any admissible in L rule, the premises of which contain only td-distributive operations, is derivable, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebraic semantics for the ‐fragment of and its properties.Katarzyna Słomczyńska - 2017 - Mathematical Logic Quarterly 63 (3-4):202-210.
    We study the variety of equivalential algebras with zero and its subquasivariety that gives the equivalent algebraic semantics for the ‐fragment of intuitionistic propositional logic. We prove that this fragment is hereditarily structurally complete. Moreover, we effectively construct the finitely generated free equivalential algebras with zero.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebraic Semantics for a Mixed Type Fragment of IPC.Eryk Lipka & Katarzyna Słomczyńska - forthcoming - Studia Logica:1-25.
    We investigate algebraically the fragment of the intuitionistic propositional calculus consisting of equivalence together with conjunction on the intuitionistic regularizations. We find that this fragment is strongly algebraizable with the equivalent algebraic semantics being the variety of equivalential algebras with an additional binary operation that can be interpreted as the meet on regular elements. We give a finite equational base for this variety, and investigate its properties, in particular the commutator. As applications, we prove that the fragment is hereditarily structurally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hereditarily Structurally Complete Superintuitionistic Deductive Systems.Alex Citkin - 2018 - Studia Logica 106 (4):827-856.
    Propositional logic is understood as a set of theorems defined by a deductive system: a set of axioms and a set of rules. Superintuitionistic logic is a logic extending intuitionistic propositional logic \. A rule is admissible for a logic if any substitution that makes each premise a theorem, makes the conclusion a theorem too. A deductive system \ is structurally complete if any rule admissible for the logic defined by \ is derivable in \. It is known that any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations