Switch to: References

Add citations

You must login to add citations.
  1. Generalizations of the Weak Law of the Excluded Middle.Andrea Sorbi & Sebastiaan A. Terwijn - 2015 - Notre Dame Journal of Formal Logic 56 (2):321-331.
    We study a class of formulas generalizing the weak law of the excluded middle and provide a characterization of these formulas in terms of Kripke frames and Brouwer algebras. We use these formulas to separate logics corresponding to factors of the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coding true arithmetic in the Medvedev and Muchnik degrees.Paul Shafer - 2011 - Journal of Symbolic Logic 76 (1):267 - 288.
    We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A survey of Mučnik and Medvedev degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
    We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give a complete picture of the relationships of inclusion holding between these sublattices, these filters, and this ideal. We show that the sublattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Characterizing the Join-Irreducible Medvedev Degrees.Paul Shafer - 2011 - Notre Dame Journal of Formal Logic 52 (1):21-38.
    We characterize the join-irreducible Medvedev degrees as the degrees of complements of Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that there are Medvedev degrees above the second-least degree that do not bound any join-irreducible degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally, we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem posed by Bianchini and Sorbi.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Natural factors of the Medvedev lattice capturing IPC.Rutger Kuyper - 2014 - Archive for Mathematical Logic 53 (7):865-879.
    Skvortsova showed that there is a factor of the Medvedev lattice which captures intuitionistic propositional logic (IPC). However, her factor is unnatural in the sense that it is constructed in an ad hoc manner. We present a more natural example of such a factor. We also show that the theory of every non-trivial factor of the Medvedev lattice is contained in Jankov’s logic, the deductive closure of IPC plus the weak law of the excluded middle $${\neg p \vee \neg \neg (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Effectively closed mass problems and intuitionism.Kojiro Higuchi - 2012 - Annals of Pure and Applied Logic 163 (6):693-697.
    Download  
     
    Export citation  
     
    Bookmark   1 citation