Switch to: References

Citations of:

The Medvedev Lattice of Degrees of Difficulty

In S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.), Computability, enumerability, unsolvability: directions in recursion theory. New York: Cambridge University Press. pp. 224--289 (1996)

Add citations

You must login to add citations.
  1. A survey of Mučnik and Medvedev degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Medvedev lattice of computably closed sets.Sebastiaan A. Terwijn - 2006 - Archive for Mathematical Logic 45 (2):179-190.
    Simpson introduced the lattice of Π0 1 classes under Medvedev reducibility. Questions regarding completeness in are related to questions about measure and randomness. We present a solution to a question of Simpson about Medvedev degrees of Π0 1 classes of positive measure that was independently solved by Simpson and Slaman. We then proceed to discuss connections to constructive logic. In particular we show that the dual of does not allow an implication operator (i.e. that is not a Heyting algebra). We (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Kripke Models, Distributive Lattices, and Medvedev Degrees.Sebastiaan A. Terwijn - 2007 - Studia Logica 85 (3):319-332.
    We define a variant of the standard Kripke semantics for intuitionistic logic, motivated by the connection between constructive logic and the Medvedev lattice. We show that while the new semantics is still complete, it gives a simple and direct correspondence between Kripke models and algebraic structures such as factors of the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Constructive Logic and the Medvedev Lattice.Sebastiaan A. Terwijn - 2006 - Notre Dame Journal of Formal Logic 47 (1):73-82.
    We study the connection between factors of the Medvedev lattice and constructive logic. The algebraic properties of these factors determine logics lying in between intuitionistic propositional logic and the logic of the weak law of the excluded middle (also known as De Morgan, or Jankov, logic). We discuss the relation between the weak law of the excluded middle and the algebraic notion of join-reducibility. Finally we discuss autoreducible degrees.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Structure of the Medvedev Lattice.Sebastiaan A. Terwijn - 2008 - Journal of Symbolic Logic 73 (2):543 - 558.
    We investigate the structure of the Medvedev lattice as a partial order. We prove that every interval in the lattice is either finite, in which case it is isomorphic to a finite Boolean algebra, or contains an antichain of size $2^{2^{\aleph }0}$ , the size of the lattice itself. We also prove that it is consistent with ZFC that the lattice has chains of size $2^{2^{\aleph }0}$ , and in fact these big chains occur in every infinite interval. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intermediate logics and factors of the Medvedev lattice.Andrea Sorbi & Sebastiaan A. Terwijn - 2008 - Annals of Pure and Applied Logic 155 (2):69-85.
    We investigate the initial segments of the Medvedev lattice as Brouwer algebras, and study the propositional logics connected to them.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • First-Order Logic in the Medvedev Lattice.Rutger Kuyper - 2015 - Studia Logica 103 (6):1185-1224.
    Kolmogorov introduced an informal calculus of problems in an attempt to provide a classical semantics for intuitionistic logic. This was later formalised by Medvedev and Muchnik as what has come to be called the Medvedev and Muchnik lattices. However, they only formalised this for propositional logic, while Kolmogorov also discussed the universal quantifier. We extend the work of Medvedev to first-order logic, using the notion of a first-order hyperdoctrine from categorical logic, to a structure which we will call the hyperdoctrine (...)
    Download  
     
    Export citation  
     
    Bookmark