Switch to: References

Add citations

You must login to add citations.
  1. Coarse computability, the density metric, Hausdorff distances between Turing degrees, perfect trees, and reverse mathematics.Denis R. Hirschfeldt, Carl G. Jockusch & Paul E. Schupp - 2023 - Journal of Mathematical Logic 24 (2).
    For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Generics for computable Mathias forcing.Peter A. Cholak, Damir D. Dzhafarov, Jeffry L. Hirst & Theodore A. Slaman - 2014 - Annals of Pure and Applied Logic 165 (9):1418-1428.
    We study the complexity of generic reals for computable Mathias forcing in the context of computability theory. The n -generics and weak n -generics form a strict hierarchy under Turing reducibility, as in the case of Cohen forcing. We analyze the complexity of the Mathias forcing relation, and show that if G is any n -generic with n≥2n≥2 then it satisfies the jump property G≡TG′⊕∅G≡TG′⊕∅. We prove that every such G has generalized high Turing degree, and so cannot have even (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mass problems and almost everywhere domination.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):483-492.
    We examine the concept of almost everywhere domination from the viewpoint of mass problems. Let AED and MLR be the sets of reals which are almost everywhere dominating and Martin-Löf random, respectively. Let b1, b2, and b3 be the degrees of unsolvability of the mass problems associated with AED, MLR × AED, and MLR ∩ AED, respectively. Let [MATHEMATICAL SCRIPT CAPITAL P]w be the lattice of degrees of unsolvability of mass problems associated with nonempty Π01 subsets of 2ω. Let 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Superhighness.Bjørn Kjos-Hanssen & Andrée Nies - 2009 - Notre Dame Journal of Formal Logic 50 (4):445-452.
    We prove that superhigh sets can be jump traceable, answering a question of Cole and Simpson. On the other hand, we show that such sets cannot be weakly 2-random. We also study the class $superhigh^\diamond$ and show that it contains some, but not all, of the noncomputable K-trivial sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Uniform Almost Everywhere Domination.Peter Cholak, Noam Greenberg & Joseph S. Miller - 2006 - Journal of Symbolic Logic 71 (3):1057 - 1072.
    We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the proof-theoretic strength of the regularity of Lebesgue measure for Gδ sets. Our constructions essentially settle the reverse mathematical classification of this principle.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Mathias generic sets.Peter A. Cholak, Damir D. Dzhafarov & Jeffry L. Hirst - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 129--138.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations