Switch to: References

Add citations

You must login to add citations.
  1. New Possibilities for Fair Algorithms.Michael Nielsen & Rush Stewart - 2024 - Philosophy and Technology 37 (4):1-17.
    We introduce a fairness criterion that we call Spanning. Spanning i) is implied by Calibration, ii) retains interesting properties of Calibration that some other ways of relaxing that criterion do not, and iii) unlike Calibration and other prominent ways of weakening it, is consistent with Equalized Odds outside of trivial cases.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Impossibility Theorem for Base Rate Tracking and Equalized Odds.Rush Stewart, Benjamin Eva, Shanna Slank & Reuben Stern - forthcoming - Analysis.
    There is a theorem that shows that it is impossible for an algorithm to jointly satisfy the statistical fairness criteria of Calibration and Equalised Odds non-trivially. But what about the recently advocated alternative to Calibration, Base Rate Tracking? Here, we show that Base Rate Tracking is strictly weaker than Calibration, and then take up the question of whether it is possible to jointly satisfy Base Rate Tracking and Equalised Odds in non-trivial scenarios. We show that it is not, thereby establishing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Measurement invariance, selection invariance, and fair selection revisited.Remco Heesen & Jan-Willem Romeijn - 2023 - Psychological Methods 28 (3):687-690.
    This note contains a corrective and a generalization of results by Borsboom et al. (2008), based on Heesen and Romeijn (2019). It highlights the relevance of insights from psychometrics beyond the context of psychological testing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity and the Limits of Fair Assessment.Rush T. Stewart - 2022 - Journal of Theoretical Politics 34 (3):415-442.
    In many assessment problems—aptitude testing, hiring decisions, appraisals of the risk of recidivism, evaluation of the credibility of testimonial sources, and so on—the fair treatment of different groups of individuals is an important goal. But individuals can be legitimately grouped in many different ways. Using a framework and fairness constraints explored in research on algorithmic fairness, I show that eliminating certain forms of bias across groups for one way of classifying individuals can make it impossible to eliminate such bias across (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations