Switch to: References

Add citations

You must login to add citations.
  1. A Duality for Involutive Bisemilattices.Stefano Bonzio, Andrea Loi & Luisa Peruzzi - 2019 - Studia Logica 107 (2):423-444.
    We establish a duality between the category of involutive bisemilattices and the category of semilattice inverse systems of Stone spaces, using Stone duality from one side and the representation of involutive bisemilattices as Płonka sum of Boolean algebras, from the other. Furthermore, we show that the dual space of an involutive bisemilattice can be viewed as a GR space with involution, a generalization of the spaces introduced by Gierz and Romanowska equipped with an involution as additional operation.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Two episodes in the unification of logic and topology.E. R. Grosholz - 1985 - British Journal for the Philosophy of Science 36 (2):147-157.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Dual Adjunction between MV-algebras and Tychonoff Spaces.Vincenzo Marra & Luca Spada - 2012 - Studia Logica 100 (1-2):253-278.
    We offer a proof of the duality theorem for finitely presented MV-algebras and rational polyhedra, a folklore and yet fundamental result. Our approach develops first a general dual adjunction between MV-algebras and subspaces of Tychonoff cubes, endowed with the transformations that are definable in the language of MV-algebras. We then show that this dual adjunction restricts to a duality between semisimple MV-algebras and closed subspaces of Tychonoff cubes. The duality theorem for finitely presented objects is obtained by a further specialisation. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Beth definability and the Stone-Weierstrass Theorem.Luca Reggio - 2021 - Annals of Pure and Applied Logic 172 (8):102990.
    The Stone-Weierstrass Theorem for compact Hausdorff spaces is a basic result of functional analysis with far-reaching consequences. We introduce an equational logic ⊨Δ associated with an infinitary variety Δ and show that the Stone-Weierstrass Theorem is a consequence of the Beth definability property of ⊨Δ, stating that every implicit definition can be made explicit. Further, we define an infinitary propositional logic ⊢Δ by means of a Hilbert-style calculus and prove a strong completeness result whereby the semantic notion of consequence associated (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Exact approximations to Stone–Čech compactification.Giovanni Curi - 2007 - Annals of Pure and Applied Logic 146 (2):103-123.
    Given a locale L and any set-indexed family of continuous mappings , fi:L→Li with compact and completely regular co-domain, a compactification η:L→Lγ of L is constructed enjoying the following extension property: for every a unique continuous mapping exists such that . Considered in ordinary set theory, this compactification also enjoys certain convenient weight limitations.Stone–Čech compactification is obtained as a particular case of this construction in those settings in which the class of [0,1]-valued continuous mappings is a set for all L. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • MV and Heyting Effect Algebras.D. J. Foulis - 2000 - Foundations of Physics 30 (10):1687-1706.
    We review the fact that an MV-algebra is the same thing as a lattice-ordered effect algebra in which disjoint elements are orthogonal. An HMV-algebra is an MV-effect algebra that is also a Heyting algebra and in which the Heyting center and the effect-algebra center coincide. We show that every effect algebra with the generalized comparability property is an HMV-algebra. We prove that, for an MV-effect algebra E, the following conditions are mutually equivalent: (i) E is HMV, (ii) E has a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On ultrafilter extensions of first-order models and ultrafilter interpretations.Nikolai L. Poliakov & Denis I. Saveliev - 2021 - Archive for Mathematical Logic 60 (5):625-681.
    There exist two known types of ultrafilter extensions of first-order models, both in a certain sense canonical. One of them comes from modal logic and universal algebra, and in fact goes back to Jónsson and Tarski :891–939, 1951; 74:127–162, 1952). Another one The infinity project proceeding, Barcelona, 2012) comes from model theory and algebra of ultrafilters, with ultrafilter extensions of semigroups as its main precursor. By a classical fact of general topology, the space of ultrafilters over a discrete space is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fine hierarchies via Priestley duality.Victor Selivanov - 2012 - Annals of Pure and Applied Logic 163 (8):1075-1107.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The introduction of topology into analytic philosophy: two movements and a coda.Samuel C. Fletcher & Nathan Lackey - 2022 - Synthese 200 (3):1-34.
    Both early analytic philosophy and the branch of mathematics now known as topology were gestated and born in the early part of the 20th century. It is not well recognized that there was early interaction between the communities practicing and developing these fields. We trace the history of how topological ideas entered into analytic philosophy through two migrations, an earlier one conceiving of topology geometrically and a later one conceiving of topology algebraically. This allows us to reassess the influence and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relational representation for subordination Tarski algebras.Sergio A. Celani - 2024 - Journal of Applied Non-Classical Logics 34 (1):75-96.
    In this work, we study the relational representation of the class of Tarski algebras endowed with a subordination, called subordination Tarski algebras. These structures were introduced in a previous paper as a generalisation of subordination Boolean algebras. We define the subordination Tarski spaces as topological spaces with a fixed basis endowed with a closed relation. We prove that there exist categorical dualities between categories whose objects are subordination Tarski algebras and categories whose objects are subordination Tarski spaces. These results extend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Menger and Nöbeling on Pointless Topology.Mathieu Bélanger & Jean-Pierre Marquis - 2013 - Logic and Logical Philosophy 22 (2):145-165.
    This paper looks at how the idea of pointless topology itself evolved during its pre-localic phase by analyzing the definitions of the concept of topological space of Menger and Nöbeling. Menger put forward a topology of lumps in order to generalize the definition of the real line. As to Nöbeling, he developed an abstract theory of posets so that a topological space becomes a particular case of topological poset. The analysis emphasizes two points. First, Menger's geometrical perspective was superseded by (...)
    Download  
     
    Export citation  
     
    Bookmark