Switch to: References

Add citations

You must login to add citations.
  1. Governing Without A Fundamental Direction of Time: Minimal Primitivism about Laws of Nature.Eddy Keming Chen & Sheldon Goldstein - 2022 - In Yemima Ben-Menahem (ed.), Rethinking Laws of Nature. Springer. pp. 21-64.
    The Great Divide in metaphysical debates about laws of nature is between Humeans, who think that laws merely describe the distribution of matter, and non-Humeans, who think that laws govern it. The metaphysics can place demands on the proper formulations of physical theories. It is sometimes assumed that the governing view requires a fundamental / intrinsic direction of time: to govern, laws must be dynamical, producing later states of the world from earlier ones, in accord with the fundamental direction of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On predictions in retro-causal interpretations of quantum mechanics.Joseph Berkovitz - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):709-735.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interaction-Free Effects Between Distant Atoms.Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur & Lee Smolin - 2018 - Foundations of Physics 48 (1):1-16.
    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former’s half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the “no exchange” result, apparently precluding entanglement, is non-locally established between the atoms by this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Laws of Nature as Constraints.Emily Adlam - 2022 - Foundations of Physics 52 (1):1-41.
    The laws of nature have come a long way since the time of Newton: quantum mechanics and relativity have given us good reasons to take seriously the possibility of laws which may be non-local, atemporal, ‘all-at-once,’ retrocausal, or in some other way not well-suited to the standard dynamical time evolution paradigm. Laws of this kind can be accommodated within a Humean approach to lawhood, but many extant non-Humean approaches face significant challenges when we try to apply them to laws outside (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Determinism beyond time evolution.Emily Adlam - 2022 - European Journal for Philosophy of Science 12 (4):1-36.
    Physicists are increasingly beginning to take seriously the possibility of laws outside the traditional time-evolution paradigm; yet many popular definitions of determinism are still predicated on a time-evolution picture, making them manifestly unsuited to the diverse range of research programmes in modern physics. In this article, we use a constraint-based framework to set out a generalization of determinism which does not presuppose temporal evolution, distinguishing between strong, weak and delocalised holistic determinism. We discuss some interesting consequences of these generalized notions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On time, causation and explanation in the causally symmetric Bohmian model of quantum mechanics.Joseph Berkovitz - 2017 - In Philippe Huneman & Christophe Bouton (eds.), Time of Nature and the Nature of Time: Philosophical Perspectives of Time in Natural Sciences. Cham: Springer. pp. 139-172.
    Quantum mechanics portrays the universe as involving non-local influences that are difficult to reconcile with relativity theory. By postulating backward causation, retro-causal interpretations of quantum mechanics could circumvent these influences and accordingly reconcile quantum mechanics with relativity. The postulation of backward causation poses various challenges for the retro-causal interpretations of quantum mechanics and for the existing conceptual frameworks for analyzing counterfactual dependence, causation and causal explanation. In this chapter, we analyze the nature of time, causation and explanation in a local, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Novel Interpretation of the Klein-Gordon Equation.K. B. Wharton - 2010 - Foundations of Physics 40 (3):313-332.
    The covariant Klein-Gordon equation requires twice the boundary conditions of the Schrödinger equation and does not have an accepted single-particle interpretation. Instead of interpreting its solution as a probability wave determined by an initial boundary condition, this paper considers the possibility that the solutions are determined by both an initial and a final boundary condition. By constructing an invariant joint probability distribution from the size of the solution space, it is shown that the usual measurement probabilities can nearly be recovered (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Probabilities and Certainties Within a Causally Symmetric Model.Roderick I. Sutherland - 2022 - Foundations of Physics 52 (4):1-17.
    This paper is concerned with the causally symmetric version of the familiar de Broglie–Bohm interpretation, this version allowing the spacelike nonlocality and the configuration space ontology of the original model to be avoided via the addition of retrocausality. Two different features of this alternative formulation are considered here. With regard to probabilities, it is shown that the model provides a derivation of the Born rule identical to that in Bohm’s original formulation. This derivation holds just as well for a many-particle, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lagrangian Description for Particle Interpretations of Quantum Mechanics: Single-Particle Case.Roderick I. Sutherland - 2015 - Foundations of Physics 45 (11):1454-1464.
    A Lagrangian description is presented which can be used in conjunction with particle interpretations of quantum mechanics. A special example of such an interpretation is the well-known Bohm model. The Lagrangian density introduced here also contains a potential for guiding the particle. The advantages of this description are that the field equations and the particle equations of motion can both be deduced from a single Lagrangian density expression and that conservation of energy and momentum are assured. After being developed in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lagrangian Description for Particle Interpretations of Quantum Mechanics: Entangled Many-Particle Case.Roderick I. Sutherland - 2017 - Foundations of Physics 47 (2):174-207.
    A Lagrangian formulation is constructed for particle interpretations of quantum mechanics, a well-known example of such an interpretation being the Bohm model. The advantages of such a description are that the equations for particle motion, field evolution and conservation laws can all be deduced from a single Lagrangian density expression. The formalism presented is Lorentz invariant. This paper follows on from a previous one which was limited to the single-particle case. The present paper treats the more general case of many (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Local $$psi $$-Epistemic Retrocausal Hidden-Variable Model of Bell Correlations with Wavefunctions in Physical Space.Indrajit Sen - 2019 - Foundations of Physics 49 (2):83-95.
    We construct a local \-epistemic hidden-variable model of Bell correlations by a retrocausal adaptation of the originally superdeterministic model given by Brans. In our model, for a pair of particles the joint quantum state \\rangle \) as determined by preparation is epistemic. The model also assigns to the pair of particles a factorisable joint quantum state \\rangle \) which is different from the prepared quantum state \\rangle \) and has an ontic status. The ontic state of a single particle consists (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Does time-symmetry imply retrocausality? How the quantum world says “Maybe”?Huw Price - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):75-83.
    It has often been suggested that retrocausality offers a solution to some of the puzzles of quantum mechanics: e.g., that it allows a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum nonlocality, without action-at-a-distance. Some writers have argued that time-symmetry counts in favour of such a view, in the sense that retrocausality would be a natural consequence of a truly time-symmetric theory of the quantum world. Critics object that there is complete time-symmetry in classical physics, and yet no (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Toy Models for Retrocausality.Huw Price - 2008 - Studies in Studies in History and Philosophy of Modern Physics 39 (4):752-761.
    A number of writers have been attracted to the idea that some of the peculiarities of quantum theory might be manifestations of 'backward' or 'retro' causality, underlying the quantum description. This idea has been explored in the literature in two main ways: firstly in a variety of explicit models of quantum systems, and secondly at a conceptual level. This note introduces a third approach, intended to complement the other two. It describes a simple toy model, which, under a natural interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum mechanics as a consistency condition on initial and final boundary conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum mechanics as a consistency condition on initial and final boundary conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements belong in a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Processes of Science and Art Modeled as a Holoflux of Information Using Toroidal Geometry.Dirk K. F. Meijer - 2018 - Open Journal of Philosophy 8 (4):365-400.
    Download  
     
    Export citation  
     
    Bookmark  
  • Retrocausal quantum mechanics: Maudlin's challenge revisited.Peter J. Lewis - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):442-449.
    In 1994, Maudlin proposed an objection to retrocausal approaches to quantum mechanics in general, and to the transactional interpretation in particular, involving an absorber that changes location depending on the trajectory of the particle. Maudlin considered this objection fatal. However, the TI did not die; rather, a number of responses were developed, some attempting to accommodate Maudlin's example within the existing TI, and others modifying the TI. I argue that none of these responses is fully adequate. The reason, I submit, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum mechanics, emergence, and fundamentality.Peter J. Lewis - 2017 - Philosophica 92 (2).
    Quantum mechanics arguably provides the best evidence we have for strong emergence. Entangled pairs of particles apparently have properties that fail to supervene on the properties of the particles taken individually. But at the same time, quantum mechanics is a terrible place to look for evidence of strong emergence: the interpretation of the theory is so contested that drawing any metaphysical conclusions from it is risky at best. I run through the standard argument for strong emergence based on entanglement, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Symmetrical Interpretation of the Klein-Gordon Equation.Michael B. Heaney - 2013 - Foundations of Physics 43 (6):733-746.
    This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multiple-context event spaces and distributions: A new framework for Bell's theorems.Brandon Fogel - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):153-161.
    I describe a new framework for the articulation and analysis of Bell's theorems for arbitrarily complicated discrete physical scenarios. The framework allows for efficient proof of some new results, as well as generalizations of some older results already known for simpler cases. The generalized known results are: satisfaction of all Bell inequalities is equivalent to the existence of a joint probability function for all possible measurement contexts and stochastic versions of Bell's theorem are not stronger than deterministic versions. The new (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • C‐theories of time: On the adirectionality of time.Matt Farr - 2020 - Philosophy Compass (12):1-17.
    “The universe is expanding, not contracting.” Many statements of this form appear unambiguously true; after all, the discovery of the universe’s expansion is one of the great triumphs of empirical science. However, the statement is time-directed: the universe expands towards what we call the future; it contracts towards the past. If we deny that time has a direction, should we also deny that the universe is really expanding? This article draws together and discusses what I call ‘C-theories’ of time — (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Retrocausality at no extra cost.Peter William Evans - 2015 - Synthese 192 (4):1139-1155.
    One obstacle faced by proposals of retrocausal influences in quantum mechanics is the perceived high conceptual cost of making such a proposal. I assemble here a metaphysical picture consistent with the possibility of retrocausality and not precluded by the known physical structure of our reality. This picture employs two relatively well-established positions—the block universe model of time and the interventionist account of causation—and requires the dismantling of our ordinary asymmetric causal intuition and our ordinary intuition about epistemic access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • New Slant on the EPR-Bell Experiment.Peter Evans, Huw Price & Ken Wharton - 2013 - British Journal for the Philosophy of Science 64 (2):297-324.
    The best case for thinking that quantum mechanics is nonlocal rests on Bell's Theorem, and later results of the same kind. However, the correlations characteristic of Einstein–Podolsky–Rosen (EPR)–Bell (EPRB) experiments also arise in familiar cases elsewhere in quantum mechanics (QM), where the two measurements involved are timelike rather than spacelike separated; and in which the correlations are usually assumed to have a local causal explanation, requiring no action-at-a-distance (AAD). It is interesting to ask how this is possible, in the light (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables.Aurélien Drezet - 2019 - Foundations of Physics 49 (10):1166-1199.
    We review several no-go theorems attributed to Gisin and Hardy, Conway and Kochen purporting the impossibility of Lorentz-invariant deterministic hidden-variable model for explaining quantum nonlocality. Those theorems claim that the only known solution to escape the conclusions is either to accept a preferred reference frame or to abandon the hidden-variable program altogether. Here we present a different alternative based on a foliation dependent framework adapted to deterministic hidden variables. We analyse the impact of such an approach on Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Laws of Physics.Eddy Keming Chen - manuscript
    Despite its apparent complexity, our world seems to be governed by simple laws of physics. This volume provides a philosophical introduction to such laws. I explain how they are connected to some of the central issues in philosophy, such as ontology, possibility, explanation, induction, counterfactuals, time, determinism, and fundamentality. I suggest that laws are fundamental facts that govern the world by constraining its physical possibilities. I examine three hallmarks of laws--simplicity, exactness, and objectivity--and discuss whether and how they may be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The World According to De Finetti.Joseph Berkovitz - unknown
    Bruno de Finetti is one of the founding fathers of the subjectivist school of probability, where probabilities are interpreted as rational degrees of belief. His work on the relation between the theorems of probability and rationality is among the corner stones of modern subjective probability theory. De Finetti maintained that rationality requires that degrees of belief be coherent, and he argued that the whole of probability theory could be derived from these coherence conditions. De Finetti’s interpretation of probability has been (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Measurement and metaphysics.Peter J. Lewis - unknown
    Protective measurement might be taken to put the last nail in the coffin of ensemble interpretations of the quantum state. My goal here is to show that even though ensemble interpretations face formidable obstacles, protective measurements don't lead to any additional difficulties. Rather, they provide us with a nice illustration of a conclusion for which we had considerable indirect evidence already, namely that quantum mechanics leads to a blurring of the distinction between the intrinsic properties of a system and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time-symmetry without retrocausality: How the quantum can withhold the solace.Huw Price - unknown
    It has been suggested that some of the puzzles of QM are resolved if we allow that there is retrocausality in the quantum world. In particular, it has been claimed that this approach offers a path to a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum "nonlocality", without action-at-a-distance. Some writers have suggested that this proposal can be supported by an appeal to time-symmetry, claiming that if QM were made "more time-symmetric", retrocausality would be a natural consequence. Critics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations