Switch to: References

Add citations

You must login to add citations.
  1. Causation, Decision Theory, and Bell’s Theorem: A Quantum Analogue of the Newcomb Problem.Eric G. Cavalcanti - 2010 - British Journal for the Philosophy of Science 61 (3):569-597.
    I apply some of the lessons from quantum theory, in particular from Bell’s theorem, to a debate on the foundations of decision theory and causation. By tracing a formal analogy between the basic assumptions of causal decision theory (CDT)—which was developed partly in response to Newcomb’s problem— and those of a local hidden variable theory in the context of quantum mechanics, I show that an agent who acts according to CDT and gives any nonzero credence to some possible causal interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Does time-symmetry imply retrocausality? How the quantum world says “Maybe”?Huw Price - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):75-83.
    It has often been suggested that retrocausality offers a solution to some of the puzzles of quantum mechanics: e.g., that it allows a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum nonlocality, without action-at-a-distance. Some writers have argued that time-symmetry counts in favour of such a view, in the sense that retrocausality would be a natural consequence of a truly time-symmetric theory of the quantum world. Critics object that there is complete time-symmetry in classical physics, and yet no (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Toy Models for Retrocausality.Huw Price - 2008 - Studies in Studies in History and Philosophy of Modern Physics 39 (4):752-761.
    A number of writers have been attracted to the idea that some of the peculiarities of quantum theory might be manifestations of 'backward' or 'retro' causality, underlying the quantum description. This idea has been explored in the literature in two main ways: firstly in a variety of explicit models of quantum systems, and secondly at a conceptual level. This note introduces a third approach, intended to complement the other two. It describes a simple toy model, which, under a natural interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Retrocausal quantum mechanics: Maudlin's challenge revisited.Peter J. Lewis - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):442-449.
    In 1994, Maudlin proposed an objection to retrocausal approaches to quantum mechanics in general, and to the transactional interpretation in particular, involving an absorber that changes location depending on the trajectory of the particle. Maudlin considered this objection fatal. However, the TI did not die; rather, a number of responses were developed, some attempting to accommodate Maudlin's example within the existing TI, and others modifying the TI. I argue that none of these responses is fully adequate. The reason, I submit, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum holism: nonseparability as common ground.Jenann Ismael & Jonathan Schaffer - manuscript
    Quantum mechanics seems to portray nature as nonseparable, in the sense that it allows spatiotemporally separated entities to have states that cannot be fully specified without reference to each other. This is often said to implicate some form of “holism.” We aim to clarify what this means, and why this seems plausible. Our core idea is that the best explanation for nonseparability is a “common ground” explanation, which casts nonseparable entities in a holistic light, as scattered reflections of a more (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Quantum holism: nonseparability as common ground.Jenann Ismael & Jonathan Schaffer - 2020 - Synthese 197 (10):4131-4160.
    Quantum mechanics seems to portray nature as nonseparable, in the sense that it allows spatiotemporally separated entities to have states that cannot be fully specified without reference to each other. This is often said to implicate some form of “holism.” We aim to clarify what this means, and why this seems plausible. Our core idea is that the best explanation for nonseparability is a “common ground” explanation, which casts nonseparable entities in a holistic light, as scattered reflections of a more (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • A Symmetrical Interpretation of the Klein-Gordon Equation.Michael B. Heaney - 2013 - Foundations of Physics 43 (6):733-746.
    This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Realistic Theory of Quantum Measurement.Alan K. Harrison - 2022 - Foundations of Physics 52 (1):1-32.
    We propose that the ontic understanding of quantum mechanics can be extended to a fully realistic theory that describes the evolution of the wavefunction at all times, including during a measurement. In such an approach the wave equation should reduce to the standard wave equation when there is no measurement, and describe state reduction when the system is measured. The general wave equation must be nonlinear and nonlocal, and we require it to be time-symmetric; consequently, this approach is not a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Retrocausality at no extra cost.Peter William Evans - 2015 - Synthese 192 (4):1139-1155.
    One obstacle faced by proposals of retrocausal influences in quantum mechanics is the perceived high conceptual cost of making such a proposal. I assemble here a metaphysical picture consistent with the possibility of retrocausality and not precluded by the known physical structure of our reality. This picture employs two relatively well-established positions—the block universe model of time and the interventionist account of causation—and requires the dismantling of our ordinary asymmetric causal intuition and our ordinary intuition about epistemic access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Causal Models, Faithfulness, and Retrocausality.Peter W. Evans - 2018 - British Journal for the Philosophy of Science 69 (3):745-774.
    Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central ideas of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • New Slant on the EPR-Bell Experiment.Peter Evans, Huw Price & Ken Wharton - 2013 - British Journal for the Philosophy of Science 64 (2):297-324.
    The best case for thinking that quantum mechanics is nonlocal rests on Bell's Theorem, and later results of the same kind. However, the correlations characteristic of Einstein–Podolsky–Rosen (EPR)–Bell (EPRB) experiments also arise in familiar cases elsewhere in quantum mechanics (QM), where the two measurements involved are timelike rather than spacelike separated; and in which the correlations are usually assumed to have a local causal explanation, requiring no action-at-a-distance (AAD). It is interesting to ask how this is possible, in the light (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Ψ-epistemic quantum cosmology?Peter W. Evans, Sean Gryb & Karim P. Y. Thébault - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:1-12.
    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmet- ric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Measurement and metaphysics.Peter J. Lewis - unknown
    Protective measurement might be taken to put the last nail in the coffin of ensemble interpretations of the quantum state. My goal here is to show that even though ensemble interpretations face formidable obstacles, protective measurements don't lead to any additional difficulties. Rather, they provide us with a nice illustration of a conclusion for which we had considerable indirect evidence already, namely that quantum mechanics leads to a blurring of the distinction between the intrinsic properties of a system and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time-symmetry without retrocausality: How the quantum can withhold the solace.Huw Price - unknown
    It has been suggested that some of the puzzles of QM are resolved if we allow that there is retrocausality in the quantum world. In particular, it has been claimed that this approach offers a path to a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum "nonlocality", without action-at-a-distance. Some writers have suggested that this proposal can be supported by an appeal to time-symmetry, claiming that if QM were made "more time-symmetric", retrocausality would be a natural consequence. Critics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations