Switch to: References

Citations of:

Randomness & Undecidability in Physics

World Scientific (1993)

Add citations

You must login to add citations.
  1. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness, complexity, randomness and beyond.Cristian S. Calude - 2002 - Minds and Machines 12 (4):503-517.
    Gödel's Incompleteness Theorems have the same scientific status as Einstein's principle of relativity, Heisenberg's uncertainty principle, and Watson and Crick's double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-theoretic approach to randomness and recent developments in quantum computing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Embedding Quantum Universes in Classical Ones.Cristian S. Calude, Peter H. Hertling & Karl Svozil - 1999 - Foundations of Physics 29 (3):349-379.
    Do the partial order and ortholattice operations of a quantum logic correspond to the logical implication and connectives of classical logic? Rephrased, How far might a classical understanding of quantum mechanics be, in principle, possible? A celebrated result of Kochen and Specker answers the above question in the negative. However, this answer is just one among various possible ones, not all negative. It is our aim to discuss the above question in terms of mappings of quantum worlds into classical ones, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Subjective decoherence in quantum measurements.Thomas Breuer - 1996 - Synthese 107 (1):1 - 17.
    General results about restrictions on measurements from inside are applied to quantum mechanics. They imply subjective decoherence: For an apparatus it is not possible to determine whether the joint system consisting of itself and the observed system is in a statistical state with or without interference terms; it is possible that the apparatus systematically mistakes the real pure state of the joint system for the decohered state. We discuss the relevance of subjective decoherence for quantum measurements and for the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical jujitsu: Some informal thoughts about G�del and physics.John D. Barrow - 2000 - Complexity 5 (5):28-34.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemic Horizons and the Foundations of Quantum Mechanics.Jochen Szangolies - 2018 - Foundations of Physics 48 (12):1669-1697.
    In-principle restrictions on the amount of information that can be gathered about a system have been proposed as a foundational principle in several recent reconstructions of the formalism of quantum mechanics. However, it seems unclear precisely why one should be thus restricted. We investigate the notion of paradoxical self-reference as a possible origin of such epistemic horizons by means of a fixed-point theorem in Cartesian closed categories due to Lawvere that illuminates and unifies the different perspectives on self-reference.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativizing Relativity.K. Svozil - 2000 - Foundations of Physics 30 (7):1001-1016.
    Special relativity theory is generalized to two or more “maximal” signalling speeds. This framework is discussed in three contexts: (i) as a scenario for superluminal signalling and motion, (ii) as the possibility of two or more “light” cones due to the a “birefringent” vacuum, and (iii) as a further extension of conventionality beyond synchrony.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information and the complementarity game.K. Svozil - 1997 - World Futures 50 (1):523-532.
    Download  
     
    Export citation  
     
    Bookmark  
  • Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay random on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum logic is undecidable.Tobias Fritz - 2020 - Archive for Mathematical Logic 60 (3):329-341.
    We investigate the first-order theory of closed subspaces of complex Hilbert spaces in the signature \\), where ‘\’ is the orthogonality relation. Our main result is that already its quasi-identities are undecidable: there is no algorithm to decide whether an implication between equations and orthogonality relations implies another equation. This is a corollary of a recent result of Slofstra in combinatorial group theory. It follows upon reinterpreting that result in terms of the hypergraph approach to quantum contextuality, for which it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-Boolean descriptions for mind-matter problems.Hans Primas - 2007 - Mind and Matter 5 (1):7-44.
    A framework for the mind-matter problem in a holistic universe which has no parts is outlined. The conceptual structure of modern quantum theory suggests to use complementary Boolean descriptions as elements for a more comprehensive non-Boolean description of a world without an a priori mind-matter distinction. Such a description in terms of a locally Boolean but globally non-Boolean structure makes allowance for the fact that Boolean descriptions play a privileged role in science. If we accept the insight that there are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations