Switch to: References

Add citations

You must login to add citations.
  1. Lying, computers and self-awareness.Paulo Castro - 2020 - Kairos 24 (1):10-34.
    From the initial analysis of John Morris in 1976 about if computers can lie, I have presented my own treatment of the problem using what can be called a computational lying procedure. One that uses two Turing Machines. From there, I have argued that such a procedure cannot be implemented in a Turing Machine alone. A fundamental difficulty arises, concerning the computational representation of the self-knowledge a machine should have about the fact that it is lying. Contrary to Morris’ claim, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Machines Will Never Rule the World: Artificial Intelligence without Fear.Jobst Landgrebe & Barry Smith - 2022 - Abingdon, England: Routledge.
    The book’s core argument is that an artificial intelligence that could equal or exceed human intelligence—sometimes called artificial general intelligence (AGI)—is for mathematical reasons impossible. It offers two specific reasons for this claim: Human intelligence is a capability of a complex dynamic system—the human brain and central nervous system. Systems of this sort cannot be modelled mathematically in a way that allows them to operate inside a computer. In supporting their claim, the authors, Jobst Landgrebe and Barry Smith, marshal evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Floridi’s Method of Levels of Abstraction.Jan van Leeuwen - 2014 - Minds and Machines 24 (1):5-17.
    ion is arguably one of the most important methods in modern science in analysing and understanding complex phenomena. In his book The Philosophy of Information, Floridi (The philosophy of information. Oxford University Press, Oxford, 2011) presents the method of levels of abstraction as the main method of the Philosophy of Information. His discussion of abstraction as a method seems inspired by the formal methods and frameworks of computer science, in which abstraction is operationalised extensively in programming languages and design methodologies. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On TAE Machines and Their Computational Power.Apostolos Syropoulos - 2019 - Logica Universalis 13 (2):165-170.
    Trail-And-Error machines have been proposed by Hintikka and Mutanen as an alternative formulation of the notion of computation. These machines extend the capabilities of the Turing machine and widen the theory of computation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The complexification of engineering.Carlos E. Maldonado, Gómez Cruz & A. Nelson - 2012 - Complexity 17 (4):8-15.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Positive affirmation of non-algorithmic information processing.Carlos Eduardo Maldonado - 2017 - Cinta de Moebio 60:279-285.
    : One of the most compelling problems in science consists in understanding how living systems process information. After all, the way they process information defines their capacities to learning and adaptation. There is an increasing consensus in that living systems are not machines in any sense. Biological hypercomputation is the concept coined that expresses that living beings process information non-algorithmically. This paper aims at proving a positive understanding of “non-algorithmic” processes. Many arguments are brought that support the claim. This foster, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergence, Computation and the Freedom Degree Loss Information Principle in Complex Systems.Ignazio Licata & Gianfranco Minati - 2017 - Foundations of Science 22 (4):863-881.
    We consider processes of emergence within the conceptual framework of the Information Loss principle and the concepts of systems conserving information; systems compressing information; and systems amplifying information. We deal with the supposed incompatibility between emergence and computability tout-court. We distinguish between computational emergence, when computation acquires properties, and emergent computation, when computation emerges as a property. The focus is on emergence processes occurring within computational processes. Violations of Turing-computability such as non-explicitness and incompleteness are intended to represent partially the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Zeno and flow of information.Jon Pérez Laraudogoitia - 2013 - Synthese 190 (3):439-447.
    Although the current literature on supertasks concentrates largely on their supposed physical implications (extending the tradition of Zeno’s classical paradoxes of movement), in this study I propose a new model of supertask that explores for the first time some of their information-related consequences and I defend these consequences from a possible criticism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Programming Infinite Machines.Anton A. Kutsenko - 2019 - Erkenntnis 87 (1):181-189.
    For infinite machines that are free from the classical Thomson’s lamp paradox, we show that they are not free from its inverted-in-time version. We provide a program for infinite machines and an infinite mechanism that demonstrate this paradox. While their finite analogs work predictably, the program and the infinite mechanism demonstrate an undefined behavior. As in the case of infinite Davies machines :671–682, 2001), our examples are free from infinite masses, infinite velocities, infinite forces, etc. Only infinite divisibility of space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • One mechanism, many models: a distributed theory of mechanistic explanation.Eric Hochstein - 2016 - Synthese 193 (5):1387-1407.
    There have been recent disagreements in the philosophy of neuroscience regarding which sorts of scientific models provide mechanistic explanations, and which do not. These disagreements often hinge on two commonly adopted, but conflicting, ways of understanding mechanistic explanations: what I call the “representation-as” account, and the “representation-of” account. In this paper, I argue that neither account does justice to neuroscientific practice. In their place, I offer a new alternative that can defuse some of these disagreements. I argue that individual models (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Giving up on convergence and autonomy: Why the theories of psychology and neuroscience are codependent as well as irreconcilable.Eric Hochstein - 2015 - Studies in History and Philosophy of Science Part A:1-19.
    There is a long-standing debate in the philosophy of mind and philosophy of science regarding how best to interpret the relationship between neuroscience and psychology. It has traditionally been argued that either the two domains will evolve and change over time until they converge on a single unified account of human behaviour, or else that they will continue to work in isolation given that they identify properties and states that exist autonomously from one another (due to the multiple-realizability of psychological (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categorizing the Mental.Eric Hochstein - 2016 - Philosophical Quarterly 66 (265):745-759.
    A common view in the philosophy of mind and philosophy of psychology is that there is an ideally correct way of categorizing the structures and operations of the mind, and that the goal of neuroscience and psychology is to find this correct categorizational scheme. Categories which cannot find a place within this correct framework ought to be eliminated from scientific practice. In this paper, I argue that this general idea runs counter to productive scientific practices. Such a view ignores the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Generalized quantifiers.Dag Westerståhl - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations