Switch to: References

Add citations

You must login to add citations.
  1. History and Philosophy of Constructive Type Theory.Giovanni Sommaruga - 2000 - Dordrecht, Netherland: Springer.
    A comprehensive survey of Martin-Löf's constructive type theory, considerable parts of which have only been presented by Martin-Löf in lecture form or as part of conference talks. Sommaruga surveys the prehistory of type theory and its highly complex development through eight different stages from 1970 to 1995. He also provides a systematic presentation of the latest version of the theory, as offered by Martin-Löf at Leiden University in Fall 1993. This presentation gives a fuller and updated account of the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Godel's interpretation of intuitionism.William Tait - 2006 - Philosophia Mathematica 14 (2):208-228.
    Gödel regarded the Dialectica interpretation as giving constructive content to intuitionism, which otherwise failed to meet reasonable conditions of constructivity. He founded his theory of primitive recursive functions, in which the interpretation is given, on the concept of computable function of finite type. I will (1) criticize this foundation, (2) propose a quite different one, and (3) note that essentially the latter foundation also underlies the Curry-Howard type theory, and hence Heyting's intuitionistic conception of logic. Thus the Dialectica interpretation (in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The completeness of Heyting first-order logic.W. W. Tait - 2003 - Journal of Symbolic Logic 68 (3):751-763.
    Restricted to first-order formulas, the rules of inference in the Curry-Howard type theory are equivalent to those of first-order predicate logic as formalized by Heyting, with one exception: ∃-elimination in the Curry-Howard theory, where ∃x : A.F (x) is understood as disjoint union, are the projections, and these do not preserve firstorderedness. This note shows, however, that the Curry-Howard theory is conservative over Heyting’s system.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strong Normalization and Typability with Intersection Types.Silvia Ghilezan - 1996 - Notre Dame Journal of Formal Logic 37 (1):44-52.
    A simple proof is given of the property that the set of strongly normalizing lambda terms coincides with the set of lambda terms typable in certain intersection type assignment systems.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Validity Concepts in Proof-theoretic Semantics.Peter Schroeder-Heister - 2006 - Synthese 148 (3):525-571.
    The standard approach to what I call “proof-theoretic semantics”, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. After a discussion of the general aims of proof-theoretic semantics, this paper investigates in detail various notions of proof-theoretic validity and offers certain improvements of the definitions given by Prawitz. Particular emphasis is placed on the relationship between semantic validity concepts and validity concepts used in normalization theory. It (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Tarski's fixed-point theorem and lambda calculi with monotone inductive types.Ralph Matthes - 2002 - Synthese 133 (1-2):107 - 129.
    The new concept of lambda calculi with monotone inductive types is introduced byhelp of motivations drawn from Tarski's fixed-point theorem (in preorder theory) andinitial algebras and initial recursive algebras from category theory. They are intendedto serve as formalisms for studying iteration and primitive recursion ongeneral inductively given structures. Special accent is put on the behaviour ofthe rewrite rules motivated by the categorical approach, most notably on thequestion of strong normalization (i.e., the impossibility of an infinitesequence of successive rewrite steps). It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A herbrandized functional interpretation of classical first-order logic.Fernando Ferreira & Gilda Ferreira - 2017 - Archive for Mathematical Logic 56 (5-6):523-539.
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Curry-Howard terms for linear logic.Frank A. Bäuerle, David Albrecht, John N. Crossley & John S. Jeavons - 1998 - Studia Logica 61 (2):223-235.
    In this paper we 1. provide a natural deduction system for full first-order linear logic, 2. introduce Curry-Howard-style terms for this version of linear logic, 3. extend the notion of substitution of Curry-Howard terms for term variables, 4. define the reduction rules for the Curry-Howard terms and 5. outline a proof of the strong normalization for the full system of linear logic using a development of Girard's candidates for reducibility, thereby providing an alternative to Girard's proof using proof-nets.
    Download  
     
    Export citation  
     
    Bookmark  
  • Curry–Howard–Lambek Correspondence for Intuitionistic Belief.Cosimo Perini Brogi - 2021 - Studia Logica 109 (6):1441-1461.
    This paper introduces a natural deduction calculus for intuitionistic logic of belief \ which is easily turned into a modal \-calculus giving a computational semantics for deductions in \. By using that interpretation, it is also proved that \ has good proof-theoretic properties. The correspondence between deductions and typed terms is then extended to a categorical semantics for identity of proofs in \ showing the general structure of such a modality for belief in an intuitionistic framework.
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations