Switch to: References

Add citations

You must login to add citations.
  1. Natural Deduction for Three-Valued Regular Logics.Yaroslav Petrukhin - 2017 - Logic and Logical Philosophy 26 (2):197–206.
    In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s logic both with one (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two-sided Sequent Calculi for FDE-like Four-valued Logics.Barteld Kooi & Allard Tamminga - 2023 - Journal of Philosophical Logic 52 (2):495-518.
    We present a method that generates two-sided sequent calculi for four-valued logics like "first degree entailment" (FDE). (We say that a logic is FDE-like if it has finitely many operators of finite arity, including negation, and if all of its operators are truth-functional over the four truth-values 'none', 'false', 'true', and 'both', where 'true' and 'both' are designated.) First, we show that for every n-ary operator * every truth table entry f*(x1,...,xn) = y can be characterized in terms of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Class of Implicative Expansions of Kleene’s Strong Logic, a Subclass of Which Is Shown Functionally Complete Via the Precompleteness of Łukasiewicz’s 3-Valued Logic Ł3.Gemma Robles & José M. Méndez - 2021 - Journal of Logic, Language and Information 30 (3):533-556.
    The present paper is a sequel to Robles et al. :349–374, 2020. https://doi.org/10.1007/s10849-019-09306-2). A class of implicative expansions of Kleene’s 3-valued logic functionally including Łukasiewicz’s logic Ł3 is defined. Several properties of this class and/or some of its subclasses are investigated. Properties contemplated include functional completeness for the 3-element set of truth-values, presence of natural conditionals, variable-sharing property and vsp-related properties.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-transitive Correspondence Analysis.Yaroslav Petrukhin & Vasily Shangin - 2023 - Journal of Logic, Language and Information 32 (2):247-273.
    The paper’s novelty is in combining two comparatively new fields of research: non-transitive logic and the proof method of correspondence analysis. To be more detailed, in this paper the latter is adapted to Weir’s non-transitive trivalent logic \({\mathbf{NC}}_{\mathbf{3}}\). As a result, for each binary extension of \({\mathbf{NC}}_{\mathbf{3}}\), we present a sound and complete Lemmon-style natural deduction system. Last, but not least, we stress the fact that Avron and his co-authors’ general method of obtaining _n_-sequent proof systems for any _n_-valent logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Automated Proof-searching for Strong Kleene Logic and its Binary Extensions via Correspondence Analysis.Yaroslav Petrukhin & Vasilyi Shangin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Automated correspondence analysis for the binary extensions of the logic of paradox.Yaroslav Petrukhin & Vasily Shangin - 2017 - Review of Symbolic Logic 10 (4):756-781.
    B. Kooi and A. Tamminga present a correspondence analysis for extensions of G. Priest’s logic of paradox. Each unary or binary extension is characterizable by a special operator and analyzable via a sound and complete natural deduction system. The present paper develops a sound and complete proof searching technique for the binary extensions of the logic of paradox.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Editorial Introduction.Francesco Paoli & Gavin St John - forthcoming - Studia Logica:1-14.
    This is the Editorial Introduction to “S.I.: Strong and Weak Kleene Logics”.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalisation of proof simulation procedures for Frege systems by M.L. Bonet and S.R. Buss.Daniil Kozhemiachenko - 2018 - Journal of Applied Non-Classical Logics 28 (4):389-413.
    ABSTRACTIn this paper, we present a generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued Łukasiewicz logics. To this end, we provide proof systems and which augment Avron's Frege system HŁuk with nested and general versions of the disjunction elimination rule, respectively. For these systems, we provide upper bounds on speed-ups w.r.t. both the number of steps in proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation.Gemma Robles & José M. Méndez - 2021 - Journal of Applied Non-Classical Logics 31 (2):130-153.
    Let MK3 I and MK3 II be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 G be defined exactly as MK3 I, except th...
    Download  
     
    Export citation  
     
    Bookmark  
  • The Method of Socratic Proofs Meets Correspondence Analysis.Dorota Leszczyńska-Jasion, Yaroslav Petrukhin & Vasilyi Shangin - 2019 - Bulletin of the Section of Logic 48 (2):99-116.
    The goal of this paper is to propose correspondence analysis as a technique for generating the so-called erotetic calculi which constitute the method of Socratic proofs by Andrzej Wiśniewski. As we explain in the paper, in order to successfully design an erotetic calculus one needs invertible sequent-calculus-style rules. For this reason, the proposed correspondence analysis resulting in invertible rules can constitute a new foundation for the method of Socratic proofs. Correspondence analysis is Kooi and Tamminga's technique for designing proof systems. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Functional Completeness in CPL via Correspondence Analysis.Dorota Leszczyńska-Jasion, Yaroslav Petrukhin, Vasilyi Shangin & Marcin Jukiewicz - 2019 - Bulletin of the Section of Logic 48 (1).
    Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set of rules characterizing a two-argument Boolean function to the negation fragment of classical propositional logic. The properties of soundness and completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalized Correspondence Analysis for Three-Valued Logics.Yaroslav Petrukhin - 2018 - Logica Universalis 12 (3-4):423-460.
    Correspondence analysis is Kooi and Tamminga’s universal approach which generates in one go sound and complete natural deduction systems with independent inference rules for tabular extensions of many-valued functionally incomplete logics. Originally, this method was applied to Asenjo–Priest’s paraconsistent logic of paradox LP. As a result, one has natural deduction systems for all the logics obtainable from the basic three-valued connectives of LP -language) by the addition of unary and binary connectives. Tamminga has also applied this technique to the paracomplete (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations