Switch to: References

Add citations

You must login to add citations.
  1. Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Everettian quantum mechanics and the ghost of fission.Josh Quirke - forthcoming - Philosophical Quarterly.
    Arguments from fission cases, most notably made by Parfit, have historically been utilized in discussions of Everettian quantum mechanics (EQM) in an attempt to illuminate details of familiar accounts in which an agent ‘splits’. Whilst such imagery is often seen as an innocuous depiction of Everett's theory, it is in fact a poisoned chalice. I argue firstly that the fission case analogy is responsible for the conceptual foundations of probability arguments in EQM and secondly, following a number of disanalogies between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Pilot-Wave Theory Without Nonlocality.Paul Tappenden - 2022 - Foundations of Physics 52 (5):1-15.
    It’s generally taken to be established that no local hidden-variable theory is possible. That conclusion applies if our world is a _thread_, where a thread is a world where particles follow trajectories, as in Pilot-Wave theory. But if our world is taken to be a _set_ of threads locality can be recovered. Our world can be described by a _many-threads_ theory, as defined by Jeffrey Barrett in the opening quote. Particles don’t follow trajectories because a particle in our world is (...)
    Download  
     
    Export citation  
     
    Bookmark