Switch to: References

Add citations

You must login to add citations.
  1. De Zolt’s Postulate: An Abstract Approach.Eduardo N. Giovannini, Edward H. Haeusler, Abel Lassalle-Casanave & Paulo A. S. Veloso - 2022 - Review of Symbolic Logic 15 (1):197-224.
    A theory of magnitudes involves criteria for their equivalence, comparison and addition. In this article we examine these aspects from an abstract viewpoint, by focusing on the so-called De Zolt’s postulate in the theory of equivalence of plane polygons (“If a polygon is divided into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon”). We formulate an abstract version of this postulate and derive it from some (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Abridgement Paradox.Roy Sorensen - 2019 - Australasian Journal of Philosophy 97 (3):572-588.
    When axiomatizing a body of truths, one first concentrates on obtaining a set of axioms that entail all and only those truths. The theorist expects that this complete system will have some...
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Formalization, primitive concepts, and purity: Formalization, primitive concepts, and purity.John T. Baldwin - 2013 - Review of Symbolic Logic 6 (1):87-128.
    We emphasize the role of the choice of vocabulary in formalization of a mathematical area and remark that this is a particular preoccupation of logicians. We use this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context of various schools in model theory. Then we clarify some of the mathematical issues in recent discussions of purity in the proof of the Desargues proposition. We note that the conclusion of ‘spatial content’ from the Desargues proposition involves arguments which are (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Survey on the Recent Studies of the Role of Diagrams in Mathematics from the Viewpoint of Philosophy of Mathematics.Hiroyuki Inaoka - 2014 - Kagaku Tetsugaku 47 (1):67-82.
    In this paper, we would present an overview of the recent studies on the role of diagram in mathematics. Traditionally, mathematicians and philosophers had thought that diagram should not be used in mathematical proofs, because relying on diagram would cause to various types of fallacies. But recently, some logicians and philosophers try to show that diagram has a legitimate place in proving mathematical theorems. We would review such trends of studies and provide some perspective from viewpoint of philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dialectical Contradictions and Classical Formal Logic.Inoue Kazumi - 2014 - International Studies in the Philosophy of Science 28 (2):113-132.
    A dialectical contradiction can be appropriately described within the framework of classical formal logic. It is in harmony with the law of noncontradiction. According to our definition, two theories make up a dialectical contradiction if each of them is consistent and their union is inconsistent. It can happen that each of these two theories has an intended model. Plenty of examples are to be found in the history of science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reading the Book of the World.Thomas Donaldson - 2015 - Philosophical Studies 172 (4):1051-1077.
    In Writing the Book of the World, Ted Sider argues that David Lewis’s distinction between those predicates which are ‘perfectly natural’ and those which are not can be extended so that it applies to words of all semantic types. Just as there are perfectly natural predicates, there may be perfectly natural connectives, operators, singular terms and so on. According to Sider, one of our goals as metaphysicians should be to identify the perfectly natural words. Sider claims that there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantifier elimination for elementary geometry and elementary affine geometry.Rafael Grimson, Bart Kuijpers & Walied Othman - 2012 - Mathematical Logic Quarterly 58 (6):399-416.
    We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry , based on extending equation image and equation image, respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
    Download  
     
    Export citation  
     
    Bookmark  
  • Against Parthood.Theodore Sider - 2013 - Oxford Studies in Metaphysics 8:237–293.
    Mereological nihilism says that there do not exist (in the fundamental sense) any objects with proper parts. A reason to accept it is that we can thereby eliminate 'part' from fundamental ideology. Many purported reasons to reject it - based on common sense, perception, and the possibility of gunk, for example - are weak. A more powerful reason is that composite objects seem needed for spacetime physics; but sets suffice instead.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Human Rationality Challenges Universal Logic.Brian R. Gaines - 2010 - Logica Universalis 4 (2):163-205.
    Tarski’s conceptual analysis of the notion of logical consequence is one of the pinnacles of the process of defining the metamathematical foundations of mathematics in the tradition of his predecessors Euclid, Frege, Russell and Hilbert, and his contemporaries Carnap, Gödel, Gentzen and Turing. However, he also notes that in defining the concept of consequence “efforts were made to adhere to the common usage of the language of every day life.” This paper addresses the issue of what relationship Tarski’s analysis, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Tarski's conceptual analysis of semantical notions.Solomon Feferman - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press. pp. 72.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizations of hyperbolic geometry: A comparison based on language and quantifier type complexity.Victor Pambuccian - 2002 - Synthese 133 (3):331 - 341.
    Hyperbolic geometry can be axiomatized using the notions of order andcongruence (as in Euclidean geometry) or using the notion of incidencealone (as in projective geometry). Although the incidence-based axiomatizationmay be considered simpler because it uses the single binary point-linerelation of incidence as a primitive notion, we show that it issyntactically more complex. The incidence-based formulation requires some axioms of the quantifier-type forallexistsforall, while the axiom system based on congruence and order can beformulated using only forallexists-axioms.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Standard Formalization.Jeffrey Ketland - 2022 - Axiomathes 32 (3):711-748.
    A standard formalization of a scientific theory is a system of axioms for that theory in a first-order language (possibly many-sorted; possibly with the membership primitive $$\in$$ ). Suppes (in: Carvallo M (ed) Nature, cognition and system II. Kluwer, Dordrecht, 1992) expressed skepticism about whether there is a “simple or elegant method” for presenting mathematicized scientific theories in such a standard formalization, because they “assume a great deal of mathematics as part of their substructure”. The major difficulties amount to these. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Case for the Irreducibility of Geometry to Algebra†.Victor Pambuccian & Celia Schacht - 2022 - Philosophia Mathematica 30 (1):1-31.
    This paper provides a definitive answer, based on considerations derived from first-order logic, to the question regarding the status of elementary geometry, whether elementary geometry can be reduced to algebra. The answer we arrive at is negative, and is based on a series of structural questions that can be asked only inside the geometric formal theory, as well as the consideration of reverse geometry, which is the art of finding minimal axiom systems strong enough to prove certain geometrical theorems, given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Marking the Centenary of Samuel Alexander’s Space, Time and Deity.A. R. J. Fisher (ed.) - 2021 - Basingstoke: Palgrave Macmillan.
    Samuel Alexander was an important figure in the rise of realism in the early twentieth century. Alongside Moore and Russell he forwarded the cause of realism in England with a systematic exposition of a realist metaphysics in his magnum opus Space, Time and Deity (1920). This volume is a collection of essays on Alexander’s philosophy, ranging from his metaphysics of spacetime, theory of categories, epistemology and account of perception, naturalism, and interpretations of reactions by R.G. Collingwood and John Anderson.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Bifurcation Approach to Hyperbolic Geometry.Abraham A. Ungar - 2000 - Foundations of Physics 30 (8):1257-1282.
    The Thomas precession of relativity physics gives rise to important isometries in hyperbolic geometry that expose analogies with Euclidean geometry. These, in turn, suggest our bifurcation approach to hyperbolic geometry, according to which Euclidean geometry bifurcates into two mutually dual branches of hyperbolic geometry in its transition to non-Euclidean geometry. One of the two resulting branches turns out to be the standard hyperbolic geometry of Bolyai and Lobachevsky. The corresponding bifurcation of Newtonian mechanics in the transition to Einsteinian mechanics indicates (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • American Postulate Theorists and Alfred Tarski.Michael Scanlan - 2003 - History and Philosophy of Logic 24 (4):307-325.
    This article outlines the work of a group of US mathematicians called the American Postulate Theorists and their influence on Tarski's work in the 1930s that was to be foundational for model theory. The American Postulate Theorists were influenced by the European foundational work of the period around 1900, such as that of Peano and Hilbert. In the period roughly from 1900???1940, they developed an indigenous American approach to foundational investigations. This made use of interpretations of precisely formulated axiomatic theories (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Beyond natural geometry: on the nature of proto-geometry.José Ferreirós & Manuel J. García-Pérez - 2020 - Philosophical Psychology 33 (2):181-205.
    ABSTRACTWe discuss the thesis of universality of geometric notions and offer critical reflections on the concept of “natural geometry” employed by Spelke and others. Promoting interdisciplinary wor...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the computational realization of formal ontologies: Formalizing an ontology of instantiation in spacetime using Isabelle/HOL as a case study.Thomas Bittner - 2019 - Applied ontology 14 (3):251-292.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Herbrand’s theorem and non-euclidean geometry.Michael Beeson, Pierre Boutry & Julien Narboux - 2015 - Bulletin of Symbolic Logic 21 (2):111-122.
    We use Herbrand’s theorem to give a new proof that Euclid’s parallel axiom is not derivable from the other axioms of first-order Euclidean geometry. Previous proofs involve constructing models of non-Euclidean geometry. This proof uses a very old and basic theorem of logic together with some simple properties of ruler-and-compass constructions to give a short, simple, and intuitively appealing proof.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing geometric constructions.Victor Pambuccian - 2008 - Journal of Applied Logic 6 (1):24-46.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • David Hilbert. David Hilbert's lectures on the foundations of geometry, 1891–1902. Michael Hallett and Ulrich Majer, eds. David Hilbert's Foundational Lectures; 1. Berlin: Springer-Verlag, 2004. ISBN 3-540-64373-7. Pp. xxviii + 661. [REVIEW]V. Pambuccian - 2013 - Philosophia Mathematica 21 (2):255-277.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstraction and Intuition in Peano's Axiomatizations of Geometry.Davide Rizza - 2009 - History and Philosophy of Logic 30 (4):349-368.
    Peano's axiomatizations of geometry are abstract and non-intuitive in character, whereas Peano stresses his appeal to concrete spatial intuition in the choice of the axioms. This poses the problem of understanding the interrelationship between abstraction and intuition in his geometrical works. In this article I argue that axiomatization is, for Peano, a methodology to restructure geometry and isolate its organizing principles. The restructuring produces a more abstract presentation of geometry, which does not contradict its intuitive content but only puts it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Cut elimination for coherent theories in negation normal form.Paolo Maffezioli - 2024 - Archive for Mathematical Logic 63 (3):427-445.
    We present a cut-free sequent calculus for a class of first-order theories in negation normal form which include coherent and co-coherent theories alike. All structural rules, including cut, are admissible.
    Download  
     
    Export citation  
     
    Bookmark  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Cham, Switzerland: Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Strict Finite Foundation for Geometric Constructions.John R. Burke - 2022 - Axiomathes 32 (2):499-527.
    Strict finitism is a minority view in the philosophy of mathematics. In this paper, we develop a strict finite axiomatic system for geometric constructions in which only constructions that are executable by simple tools in a small number of steps are permitted. We aim to demonstrate that as far as the applications of synthetic geometry to real-world constructions are concerned, there are viable strict finite alternatives to classical geometry where by one can prove analogs to fundamental results in classical geometry. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Betweenness Algebras.Ivo Düntsch, Rafał Gruszczyński & Paula Menchón - forthcoming - Journal of Symbolic Logic:1-25.
    We introduce and study a class ofbetweenness algebras—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators ofpossibilityand ofsufficiency.
    Download  
     
    Export citation  
     
    Bookmark  
  • A constructive version of Tarski's geometry.Michael Beeson - 2015 - Annals of Pure and Applied Logic 166 (11):1199-1273.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tarski’s Influence on Computer Science.Solomon Feferman - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 391-404.
    Alfred Tarski’s influence on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is Tarski’s work on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, model-theoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model-theory of vector-spaces over unspecified fields.David Pierce - 2009 - Archive for Mathematical Logic 48 (5):421-436.
    Vector spaces over unspecified fields can be axiomatized as one-sorted structures, namely, abelian groups with the relation of parallelism. Parallelism is binary linear dependence. When equipped with the n-ary relation of linear dependence for some positive integer n, a vector-space is existentially closed if and only if it is n-dimensional over an algebraically closed field. In the signature with an n-ary predicate for linear dependence for each positive integer n, the theory of infinite-dimensional vector spaces over algebraically closed fields is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Spheres, cubes and simple.Stefano Borgo - 2013 - Logic and Logical Philosophy 22 (3):255-293.
    In 1929 Tarski showed how to construct points in a region-based first-order logic for space representation. The resulting system, called the geometry of solids, is a cornerstone for region-based geometry and for the comparison of point-based and region-based geometries. We expand this study of the construction of points in region-based systems using different primitives, namely hyper-cubes and regular simplexes, and show that these primitives lead to equivalent systems in dimension n ≥ 2. The result is achieved by adopting a single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing classical and relativistic kinematics in first-order logic.Koen Lefever & Gergely Székely - unknown
    The aim of this paper is to present a new logic-based understanding of the connection between classical kinematics and relativistic kinematics. We show that the axioms of special relativity can be interpreted in the language of classical kinematics. This means that there is a logical translation function from the language of special relativity to the language of classical kinematics which translates the axioms of special relativity into consequences of classical kinematics. We will also show that if we distinguish a class (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Empirical foundation of space and time.Laszlo E. Szabo - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 251--266.
    I will sketch a possible way of empirical/operational definition of space and time tags of physical events, without logical or operational circularities and with a minimal number of conventional elements. As it turns out, the task is not trivial; and the analysis of the problem leads to a few surprising conclusions.
    Download  
     
    Export citation  
     
    Bookmark   8 citations