Switch to: References

Add citations

You must login to add citations.
  1. Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Formal Ontology and Mathematics. A Case Study on the Identity of Proofs.Matteo Bianchetti & Giorgio Venturi - 2023 - Topoi 42 (1):307-321.
    We propose a novel, ontological approach to studying mathematical propositions and proofs. By “ontological approach” we refer to the study of the categories of beings or concepts that, in their practice, mathematicians isolate as fruitful for the advancement of their scientific activity (like discovering and proving theorems, formulating conjectures, and providing explanations). We do so by developing what we call a “formal ontology” of proofs using semantic modeling tools (like RDF and OWL) developed by the computer science community. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. I will (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of Objectivity? Mathemata and Social Objects.José Ferreirós - 2022 - Topoi 42 (1):199-209.
    A down-to-earth admission of abstract objects can be based on detailed explanation of where the objectivity of mathematics comes from, and how a ‘thin’ notion of object emerges from objective mathematical discourse or practices. We offer a sketch of arguments concerning both points, as a basis for critical scrutiny of the idea that mathematical and social objects are essentially of the same kind—which is criticized. Some authors have proposed that mathematical entities are indeed institutional objects, a product of our collective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual Structuralism.José Ferreirós - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):125-148.
    This paper defends a conceptualistic version of structuralism as the most convincing way of elaborating a philosophical understanding of structuralism in line with the classical tradition. The argument begins with a revision of the tradition of “conceptual mathematics”, incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or Noether, showing how it led to a structuralist methodology. Then the tension between the ‘presuppositionless’ approach of those authors, and the platonism of some recent versions of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicativism as a Form of Potentialism.Øystein Linnebo & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (1):1-32.
    In the literature, predicativism is connected not only with the Vicious Circle Principle but also with the idea that certain totalities are inherently potential. To explain the connection between these two aspects of predicativism, we explore some approaches to predicativity within the modal framework for potentiality developed in Linnebo (2013) and Linnebo and Shapiro (2019). This puts predicativism into a more general framework and helps to sharpen some of its key theses.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Predicativity and Feferman.Laura Crosilla - 2017 - In Gerhard Jäger & Wilfried Sieg (eds.), Feferman on Foundations: Logic, Mathematics, Philosophy. Cham: Springer. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Surreal Time and Ultratasks.Haidar Al-Dhalimy & Charles J. Geyer - 2016 - Review of Symbolic Logic 9 (4):836-847.
    This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (a sequence which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Subjective Roots of Forcing Theory and Their Influence in Independence Results.Stathis Livadas - 2015 - Axiomathes 25 (4):433-455.
    This article attempts a subjectively based approach, in fact one phenomenologically motivated, toward some key concepts of forcing theory, primarily the concepts of a generic set and its global properties and the absoluteness of certain fundamental relations in the extension to a forcing model M[G]. By virtue of this motivation and referring both to the original and current formulation of forcing I revisit certain set-theoretical notions serving as underpinnings of the theory and try to establish their deeper subjectively founded content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Is the Continuum Hypothesis a definite mathematical problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Transcendental Source of Logic by Way of Phenomenology.Stathis Livadas - 2018 - Axiomathes 28 (3):325-344.
    In this article I am going to argue for the possibility of a transcendental source of logic based on a phenomenologically motivated approach. My aim will be essentially carried out in two succeeding steps of reduction: the first one will be the indication of existence of an inherent temporal factor conditioning formal predicative discourse and the second one, based on a supplementary reduction of objective temporality, will be a recourse to a time-constituting origin which has to be assumed as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is the Nature of Mathematical–Logical Objects?Stathis Livadas - 2017 - Axiomathes 27 (1):79-112.
    This article deals with a question of a most general, comprehensive and profound content as it is the nature of mathematical–logical objects insofar as these are considered objects of knowledge and more specifically objects of formal mathematical theories. As objects of formal theories they are dealt with in the sense they have acquired primarily from the beginnings of the systematic study of mathematical foundations in connection with logic dating from the works of G. Cantor and G. Frege in the last (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Gretchenfragen an den Naturalisten.Gerhard Vollmer - 2012 - Philosophia Naturalis 49 (2):239-291.
    A philosophical position may be characterized in different ways. Here we try to say how the naturalist answers certain . The questions come from very different areas; the spectrum of subjects is therefore quite mixed. There are, however, aspects of order: We start with (questions about) abstract subjects like logic, mathematics, metaphysics, then turn to problems of realism. And since in general naturalists are realists, the following questions on truth, laws of nature, origin of the universe, cosmology, evolution, body-mind-problem, freedom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Theoriegeleitete Bestimmung von Objektmengen und Beobachtungsintervallen am Beispiel des Halleyschen Kometen.Ulrich Gähde - 2012 - Philosophia Naturalis 49 (2):207-224.
    The starting point of the following considerations is a case study concerning the discovery of Halley's comet and the theoretical description of its path. It is shown that the set of objects involved in that system and the time interval during which their paths are observed are determined in a theory dependent way – thereby making use of the very theory later used for that system's theoretical description. Metatheoretical consequences this fact has with respect to the structuralist view of empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Análisis de la relación entre el continuo intuitivo y el matemático en "Das Kontinuum".Victor Gonzalez Rojo - 2021 - Revista de Filosofía 46 (2):255-270.
    En este artículo pretendo discutir la conclusión a la que llega Weyl en su libro _El continuo_ sobre la relación entre el continuo intuitivo y el matemático. Esto me sirve a su vez para analizar más profundamente estas ideas, y postular la propiedad de ausencia de espacios vacíos [_Lückenlosigkeit_] como fundamento del continuo intuitivo y, en consecuencia, del matemático. Proponiendo además una alternativa idealista para el tratamiento del problema del continuo.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation