Switch to: References

Add citations

You must login to add citations.
  1. Relative lawlessness in intuitionistic analysis.Joan Rand Moschovakis - 1987 - Journal of Symbolic Logic 52 (1):68-88.
    This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well-ordered class F of sequences, generated by iterating definability over the continuum, is countable then the F-lawless, sequences satisfy the axiom of open data and the continuity principle for functions from lawless (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On a second order propositional operator in intuitionistic logic.A. S. Troelstra - 1981 - Studia Logica 40 (2):113 - 139.
    This paper studies, by way of an example, the intuitionistic propositional connective * defined in the language of second order propositional logic by. In full topological models * is not generally definable, but over Cantor-space and the reals it can be classically shown that; on the other hand, this is false constructively, i.e. a contradiction with Church's thesis is obtained. This is comparable with some well-known results on the completeness of intuitionistic first-order predicate logic.Over [0, 1], the operator * is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Choice Sequences and Knowledge States: Extending the Notion of Finite Information to Produce a Clearer Foundation for Intuitionistic Analysis, Keele University, UK, 2017. Supervised by Peter Fletcher.James Firoze Appleby - 2018 - Bulletin of Symbolic Logic 24 (2):196-197.
    Download  
     
    Export citation  
     
    Bookmark  
  • More about relatively lawless sequences.Joan Rand Moschovakis - 1994 - Journal of Symbolic Logic 59 (3):813-829.
    In the author's Relative lawlessness in intuitionistic analysis [this JOURNAL. vol. 52 (1987). pp. 68-88] and An intuitionistic theory of lawlike, choice and lawless sequences [Logic Colloquium '90. Springer-Verlag. Berlin. 1993. pp. 191-209] a notion of lawless ness relative to a countable information base was developed for classical and intuitionistic analysis. Here we simplify the predictability property characterizing relatively lawless sequences and derive it from the new axiom of closed data (classically equivalent to open data) together with a natural principle (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The continuum hypothesis in intuitionism.W. Gielen, H. de Swart & W. Veldman - 1981 - Journal of Symbolic Logic 46 (1):121-136.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On a second order propositional operator in intuitionistic logic.A. A. Troelstra - 1981 - Studia Logica 40:113.
    This paper studies, by way of an example, the intuitionistic propositional connective * defined in the language of second order propositional logic by * ≡ ∃Q. In full topological models * is not generally definable but over Cantor-space and the reals it can be classically shown that *↔ ⅂⅂P; on the other hand, this is false constructively, i.e. a contradiction with Church's thesis is obtained. This is comparable with some well-known results on the completeness of intuitionistic first-order predicate logic. Over (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Arguments for the continuity principle.Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329-347.
    There are two principles that lend Brouwer's mathematics the extra power beyond arithmetic. Both are presented in Brouwer's writings with little or no argument. One, the principle of bar induction, will not concern us here. The other, the continuity principle for numbers, occurs for the first time in print in [4]. It is formulated and immediately applied to show that the set of numerical choice sequences is not enumerable. In fact, the idea of the continuity property can be dated fairly (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intuitionistic analysis at the end of time.Joan Rand Moschovakis - 2017 - Bulletin of Symbolic Logic 23 (3):279-295.
    Kripke recently suggested viewing the intuitionistic continuum as an expansion in time of a definite classical continuum. We prove the classical consistency of a three-sorted intuitionistic formal system IC, simultaneously extending Kleene’s intuitionistic analysis I and a negative copy C° of the classically correct part of I, with an “end of time” axiom ET asserting that no choice sequence can be guaranteed not to be pointwise equal to a definite sequence. “Not every sequence is pointwise equal to a definite sequence” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decidability in the Constructive Theory of Reals as an Ordered ℚ‐vectorspace.Miklós Erdélyi-Szabó - 1997 - Mathematical Logic Quarterly 43 (3):343-354.
    We show that various fragments of the intuitionistic/constructive theory of the reals are decidable.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An intuitionistic proof of Tychonoff's theorem.Thierry Coquand - 1992 - Journal of Symbolic Logic 57 (1):28-32.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From the axiom of choice to choice sequences.H. Jervell - 1996 - Nordic Journal of Philosophical Logic 1 (1):95-98.
    Download  
     
    Export citation  
     
    Bookmark   1 citation