Switch to: References

Add citations

You must login to add citations.
  1. Elementary chains and C (n)-cardinals.Konstantinos Tsaprounis - 2014 - Archive for Mathematical Logic 53 (1-2):89-118.
    The C (n)-cardinals were introduced recently by Bagaria and are strong forms of the usual large cardinals. For a wide range of large cardinal notions, Bagaria has shown that the consistency of the corresponding C (n)-versions follows from the existence of rank-into-rank elementary embeddings. In this article, we further study the C (n)-hierarchies of tall, strong, superstrong, supercompact, and extendible cardinals, giving some improved consistency bounds while, at the same time, addressing questions which had been left open. In addition, we (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Identity crisis between supercompactness and vǒpenka’s principle.Yair Hayut, Menachem Magidor & Alejandro Poveda - 2022 - Journal of Symbolic Logic 87 (2):626-648.
    In this paper we study the notion of $C^{}$ -supercompactness introduced by Bagaria in [3] and prove the identity crises phenomenon for such class. Specifically, we show that consistently the least supercompact is strictly below the least $C^{}$ -supercompact but also that the least supercompact is $C^{}$ -supercompact }$ -supercompact). Furthermore, we prove that under suitable hypothesis the ultimate identity crises is also possible. These results solve several questions posed by Bagaria and Tsaprounis.
    Download  
     
    Export citation  
     
    Bookmark  
  • Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • More on the Preservation of Large Cardinals Under Class Forcing.Joan Bagaria & Alejandro Poveda - 2023 - Journal of Symbolic Logic 88 (1):290-323.
    We prove two general results about the preservation of extendible and $C^{(n)}$ -extendible cardinals under a wide class of forcing iterations (Theorems 5.4 and 7.5). As applications we give new proofs of the preservation of Vopěnka’s Principle and $C^{(n)}$ -extendible cardinals under Jensen’s iteration for forcing the GCH [17], previously obtained in [8, 27], respectively. We prove that $C^{(n)}$ -extendible cardinals are preserved by forcing with standard Easton-support iterations for any possible $\Delta _2$ -definable behaviour of the power-set function on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ultrahuge cardinals.Konstantinos Tsaprounis - 2016 - Mathematical Logic Quarterly 62 (1-2):77-87.
    In this note, we start with the notion of a superhuge cardinal and strengthen it by requiring that the elementary embeddings witnessing this property are, in addition, sufficiently superstrong above their target. This modification leads to a new large cardinal which we call ultrahuge. Subsequently, we study the placement of ultrahugeness in the usual large cardinal hierarchy, while at the same time show that some standard techniques apply nicely in the context of ultrahuge cardinals as well.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On c-extendible cardinals.Konstantinos Tsaprounis - 2018 - Journal of Symbolic Logic 83 (3):1112-1131.
    Download  
     
    Export citation  
     
    Bookmark   3 citations