Switch to: Citations

Add references

You must login to add references.
  1. The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Accessing the switchboard via set forcing.Shoshana Friedman - 2012 - Mathematical Logic Quarterly 58 (4-5):303-306.
    We force a property of cardinals first proved relatively consistent by Sargsyan, that of being supercompact but not equation image-supercompact, starting from a model of set theory which does not satisfy equation image and that contains supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Set Theory: An Introduction to Independence Proofs.Kenneth Kunen - 1980 - North-Holland.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Fragile measurability.Joel Hamkins - 1994 - Journal of Symbolic Logic 59 (1):262-282.
    Laver [L] and others [G-S] have shown how to make the supercompactness or strongness of κ indestructible by a wide class of forcing notions. We show, alternatively, how to make these properties fragile. Specifically, we prove that it is relatively consistent that any forcing which preserves $\kappa^{<\kappa}$ and κ+, but not P(κ), destroys the measurability of κ, even if κ is initially supercompact, strong, or if I1(κ) holds. Obtained as an application of some general lifting theorems, this result is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Large cardinals and gap-1 morasses.Andrew D. Brooke-Taylor & Sy-David Friedman - 2009 - Annals of Pure and Applied Logic 159 (1-2):71-99.
    We present a new partial order for directly forcing morasses to exist that enjoys a significant homogeneity property. We then use this forcing in a reverse Easton iteration to obtain an extension universe with morasses at every regular uncountable cardinal, while preserving all n-superstrong , hyperstrong and 1-extendible cardinals. In the latter case, a preliminary forcing to make the GCH hold is required. Our forcing yields morasses that satisfy an extra property related to the homogeneity of the partial order; we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Laver sequences for extendible and super-almost-huge cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
    Versions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses, Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Homogeneous iteration and measure one covering relative to HOD.Natasha Dobrinen & Sy-David Friedman - 2008 - Archive for Mathematical Logic 47 (7-8):711-718.
    Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal κ, κ + is greater than κ + of HOD. The proof uses a very general lemma showing that homogeneity is preserved through certain reverse Easton iterations.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations