Switch to: References

Add citations

You must login to add citations.
  1. Characterizing the interpretation of set theory in Martin-Löf type theory.Michael Rathjen & Sergei Tupailo - 2006 - Annals of Pure and Applied Logic 141 (3):442-471.
    Constructive Zermelo–Fraenkel set theory, CZF, can be interpreted in Martin-Löf type theory via the so-called propositions-as-types interpretation. However, this interpretation validates more than what is provable in CZF. We now ask ourselves: is there a reasonably simple axiomatization of the set-theoretic formulae validated in Martin-Löf type theory? The answer is yes for a large collection of statements called the mathematical formulae. The validated mathematical formulae can be axiomatized by suitable forms of the axiom of choice.The paper builds on a self-interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories of Frege structure equivalent to Feferman's system T 0.Daichi Hayashi - 2025 - Annals of Pure and Applied Logic 176 (1):103510.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the intuitionistic strength of monotone inductive definitions.Sergei Tupailo - 2004 - Journal of Symbolic Logic 69 (3):790-798.
    We prove here that the intuitionistic theory $T_{0}\upharpoonright + UMID_{N}$ , or even $EEJ\upharpoonright + UMID_{N}$ , of Explicit Mathematics has the strength of $\prod_{2}^{1} - CA_{0}$ . In Section I we give a double-negation translation for the classical second-order $\mu-calculus$ , which was shown in [ $M\ddot{o}02$ ] to have the strength of $\prod_{2}^{1}-CA_{0}$ . In Section 2 we interpret the intuitionistic $\mu-calculus$ in the theory $EETJ\upharpoonright + UMID_{N}$ . The question about the strength of monotone inductive definitions in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T 0.Kentaro Sato - 2015 - Annals of Pure and Applied Logic 166 (7-8):800-835.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reflections on reflections in explicit mathematics.Gerhard Jäger & Thomas Strahm - 2005 - Annals of Pure and Applied Logic 136 (1-2):116-133.
    We give a broad discussion of reflection principles in explicit mathematics, thereby addressing various kinds of universe existence principles. The proof-theoretic strength of the relevant systems of explicit mathematics is couched in terms of suitable extensions of Kripke–Platek set theory.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations