Switch to: References

Add citations

You must login to add citations.
  1. Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Lesniewski and Russell's paradox: Some problems.Rafal Urbaniak - 2008 - History and Philosophy of Logic 29 (2):115-146.
    Sobocinski in his paper on Leśniewski's solution to Russell's paradox (1949b) argued that Leśniewski has succeeded in explaining it away. The general strategy of this alleged explanation is presented. The key element of this attempt is the distinction between the collective (mereological) and the distributive (set-theoretic) understanding of the set. The mereological part of the solution, although correct, is likely to fall short of providing foundations of mathematics. I argue that the remaining part of the solution which suggests a specific (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on Identity and Higher Order Quantification.Rafal Urbaniak - 2009 - Australasian Journal of Logic 7:48--55.
    It is a commonplace remark that the identity relation, even though not expressible in a first-order language without identity with classical set-theoretic semantics, can be defined in a language without identity, as soon as we admit second-order, set-theoretically interpreted quantifiers binding predicate variables that range over all subsets of the domain. However, there are fairly simple and intuitive higher-order languages with set-theoretic semantics in which the identity relation is not definable. The point is that the definability of identity in higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Axiomatisation of a Pure Calculus of Names.Piotr Kulicki - 2012 - Studia Logica 100 (5):921-946.
    A calculus of names is a logical theory describing relations between names. By a pure calculus of names we mean a quantifier-free formulation of such a theory, based on classical propositional calculus. An axiomatisation of a pure calculus of names is presented and its completeness is discussed. It is shown that the axiomatisation is complete in three different ways: with respect to a set theoretical model, with respect to Leśniewski's Ontology and in a sense defined with the use of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations