Switch to: References

Citations of:

Mathematical Depth

Philosophia Mathematica 23 (2):233-241 (2015)

Add citations

You must login to add citations.
  1. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Value Judgments in Mathematics: G. H. Hardy and the (Non-)seriousness of Mathematical Theorems.Simon Weisgerber - 2024 - Global Philosophy 34 (1):1-24.
    One of the general criteria G. H. Hardy identifies and discusses in his famous essay A Mathematician’s Apology (Cambridge University Press, Cambridge, 1940) by which a mathematician’s patterns must be judged is seriousness. This article focuses on one of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only numbers below 10000 which are integral multiples of their reversals, in the sense that 8712 = 4·2178, and 9801 = 9·1089. In the context of a discussion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark