Citations of:
Algorithmic information theory
Journal of Symbolic Logic 54 (4):13891400 (1989)
Add citations
You must login to add citations.


The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure of (...) 

Chaitin’s incompleteness result related to random reals and the halting probability has been advertised as the ultimate and the strongest possible version of the incompleteness and undecidability theorems. It is argued that such claims are exaggerations. 

In this paper I discuss possible ways of measuring the power of arithmetical theories, and the possiblity of making an explication in Carnap's sense of this concept. Chaitin formulates several suggestions how to construct measures, and these suggestions are reviewed together with some new and old critical arguments. I also briefly review a measure I have designed together with some shortcomings of this measure. The conclusion of the paper is that it is not possible to formulate an explication of the (...) 

Gödel's Incompleteness Theorems have the same scientific status as Einstein's principle of relativity, Heisenberg's uncertainty principle, and Watson and Crick's double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an informationtheoretic approach to randomness and recent developments in quantum computing. 

Review of "Exploring Randomness" (200) and "The Unknowable" (1999) by Gregory Chaitin. 



We investigate two constants cT and rT, introduced by Chaitin and Raatikainen respectively, defined for each recursively axiomatizable consistent theory T and universal Turing machine used to determine Kolmogorov complexity. Raatikainen argued that cT does not represent the complexity of T and found that for two theories S and T, one can always find a universal Turing machine such that equation image. We prove the following are equivalent: equation image for some universal Turing machine, equation image for some universal Turing (...) 



