Switch to: References

Add citations

You must login to add citations.
  1. A proof of the impossibility of completing infinitely many tasks.Jeremy Gwiazda - 2012 - Pacific Philosophical Quarterly 93 (1):1-7.
    In this article, I argue that it is impossible to complete infinitely many tasks in a finite time. A key premise in my argument is that the only way to get to 0 tasks remaining is from 1 task remaining, when tasks are done 1-by-1. I suggest that the only way to deny this premise is by begging the question, that is, by assuming that supertasks are possible. I go on to present one reason why this conclusion (that supertasks are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes.John Earman & John D. Norton - 1993 - Philosophy of Science 60 (1):22-42.
    The standard theory of computation excludes computations whose completion requires an infinite number of steps. Malament-Hogarth spacetimes admit observers whose pasts contain entire future-directed, timelike half-curves of infinite proper length. We investigate the physical properties of these spacetimes and ask whether they and other spacetimes allow the observer to know the outcome of a computation with infinitely many steps.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • ¿Existen las Máquinas Aceleradas de Turing? Paradojas y posibilidades lógicas.Jose Alejandro Fernández Cuesta - 2023 - Techno Review. International Technology, Science and Society Review 13 (1):49.74.
    Las máquinas aceleradas de Turing (ATMs) son dispositivos capaces de ejecutar súper-tareas. Sin embargo, el simple ejercicio de definirlas ha generado varias paradojas. En el presente artículo se definirán las nociones de súper-tarea y ATM de manera exhaustiva y se aclarará qué debe entenderse en un contexto lógico-formal cuando se pregunta por la existencia de un objeto. A partir de la distinción entre posibilidades lógicas y físicas se disolverán las paradojas y se concluirá que las ATMs son posibles y existen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La thèse de l’hyper-calcul : enjeux et problèmes philosophiques.Florent Franchette - 2012 - Philosophia Scientiae 16 (3):17-38.
    Dans cet article je réponds à deux questions philosophiques soule­vées par la thèse suivante appelée « thèse de l’hyper-calcul » : il est possible de construire physiquement un modèle d’hyper-calcul. La première question est liée aux enjeux de cette thèse. Puisque la construction physique d’un modèle de calcul dépasse le cadre mathématique initial de la théorie de la calculabilité, j expliquerai pourquoi il est nécessaire de construire physiquement un modèle d’hyper-calcul. La seconde question concerne le problème de la vérification : (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical arithmetic is quite unnatural.Jean Paul Van Bendegem - 2003 - Logic and Logical Philosophy 11:231-249.
    It is a generally accepted idea that strict finitism is a rather marginal view within the community of philosophers of mathematics. If one therefore wants to defend such a position (as the present author does), then it is useful to search for as many different arguments as possible in support of strict finitism. Sometimes, as will be the case in this paper, the argument consists of, what one might call, a “rearrangement” of known materials. The novelty lies precisely in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some relativistic and higher order supertasks.Jon Pérez Laraudogoitia - 1998 - Philosophy of Science 65 (3):502-517.
    The first aim of this paper is to introduce a new way of looking at supertasks in the light of special relativity which makes use of the elementary dynamics of relativistic point particles subjected to elastic binary collisions and constrained to move unidimensionally. In addition, this will enable us to draw new physical consequences from the possibility of supertasks whose ordinal type is higher than the usual ω or ω * considered so far in the literature. Thus, the paper shows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Exploring argumentation, objectivity, and bias: The case of mathematical infinity.Mamolo Ami - unknown
    This paper presents an overview of several years of my research into individuals’ reasoning, argumentation, and bias when addressing problems, scenarios, and symbols related to mathematical infinity. There is a long history of debate around what constitutes “objective truth” in the realm of mathematical infinity, dating back to ancient Greece. Modes of argumentation, hindrances, and intuitions have been largely consistent over the years and across levels of expertise. This presentation examines the interrelated complexities of notions of objectivity, bias, and argumentation (...)
    Download  
     
    Export citation  
     
    Bookmark