Switch to: References

Add citations

You must login to add citations.
  1. There Are No Minimal Effectively Inseparable Theories.Yong Cheng - 2023 - Notre Dame Journal of Formal Logic 64 (4):425-439.
    This paper belongs to the research on the limit of the first incompleteness theorem. Effectively inseparable (EI) theories can be viewed as an effective version of essentially undecidable (EU) theories, and EI is stronger than EU. We examine this question: Are there minimal effectively inseparable theories with respect to interpretability? We propose tEI, the theory version of EI. We first prove that there are no minimal tEI theories with respect to interpretability (i.e., for any tEI theory T, we can effectively (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, where $\alpha (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Friedman-reflexivity.Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (9):103160.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Vaught's theorem on axiomatizability by a scheme.Albert Visser - 2012 - Bulletin of Symbolic Logic 18 (3):382-402.
    In his 1967 paper Vaught used an ingenious argument to show that every recursively enumerable first order theory that directly interprets the weak system VS of set theory is axiomatizable by a scheme. In this paper we establish a strengthening of Vaught's theorem by weakening the hypothesis of direct interpretability of VS to direct interpretability of the finitely axiomatized fragment VS2 of VS. This improvement significantly increases the scope of the original result, since VS is essentially undecidable, but VS2 has (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Peripatetic Program in Categorical Logic: Leibniz on Propositional Terms.Marko Malink & Anubav Vasudevan - 2019 - Review of Symbolic Logic 13 (1):141-205.
    Greek antiquity saw the development of two distinct systems of logic: Aristotle’s theory of the categorical syllogism and the Stoic theory of the hypothetical syllogism. Some ancient logicians argued that hypothetical syllogistic is more fundamental than categorical syllogistic on the grounds that the latter relies on modes of propositional reasoning such asreductio ad absurdum. Peripatetic logicians, by contrast, sought to establish the priority of categorical over hypothetical syllogistic by reducing various modes of propositional reasoning to categorical form. In the 17th (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sequence encoding without induction.Emil Jeřábek - 2012 - Mathematical Logic Quarterly 58 (3):244-248.
    We show that the universally axiomatized, induction-free theory equation image is a sequential theory in the sense of Pudlák's 5, in contrast to the closely related Robinson's arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Predicative Expansions of Axiomatic Theories.Stanissław Krajewski - 1974 - Mathematical Logic Quarterly 20 (28-29):435-452.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on Typed Truth and Consistency Assertions.Carlo Nicolai - 2016 - Journal of Philosophical Logic 45 (1):89-119.
    In the paper we investigate typed axiomatizations of the truth predicate in which the axioms of truth come with a built-in, minimal and self-sufficient machinery to talk about syntactic aspects of an arbitrary base theory. Expanding previous works of the author and building on recent works of Albert Visser and Richard Heck, we give a precise characterization of these systems by investigating the strict relationships occurring between them, arithmetized model constructions in weak arithmetical systems and suitable set existence axioms. The (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Pairs, sets and sequences in first-order theories.Albert Visser - 2008 - Archive for Mathematical Logic 47 (4):299-326.
    In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On expandability of models of Peano arithmetic. III.Roman Murawski - 1977 - Studia Logica 36 (3):181-188.
    Already after sending the first two parts of this paper ([5], [6]) to the editor, two new results on the subject have appeared — namely the results of G. Wilmers and Z. Ratajczyk. So for the sake of completeness let us review them here.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Peano Corto and Peano Basso: A Study of Local Induction in the Context of Weak Theories.Albert Visser - 2014 - Mathematical Logic Quarterly 60 (1-2):92-117.
    In this paper we study local induction w.r.t. Σ1‐formulas over the weak arithmetic. The local induction scheme, which was introduced in, says roughly this: for any virtual class that is progressive, i.e., is closed under zero and successor, and for any non‐empty virtual class that is definable by a Σ1‐formula without parameters, the intersection of and is non‐empty. In other words, we have, for all Σ1‐sentences S, that S implies, whenever is progressive. Since, in the weak context, we have (at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cardinal arithmetic in the style of Baron Von münchhausen.Albert Visser - 2009 - Review of Symbolic Logic 2 (3):570-589.
    In this paper we show how to interpret Robinson’s arithmetic Q and the theory R of Tarski, Mostowski, and Robinson as theories of cardinals in very weak theories of relations over a domain.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The theory of hereditarily bounded sets.Emil Jeřábek - 2022 - Mathematical Logic Quarterly 68 (2):243-256.
    We show that for any, the structure of sets that are hereditarily of size at most k is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure of hereditarily finite sets, which is well known to be bi‐interpretable with the standard model of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Second Incompleteness Theorem and Bounded Interpretations.Albert Visser - 2012 - Studia Logica 100 (1-2):399-418.
    In this paper we formulate a version of Second Incompleteness Theorem. The idea is that a sequential sentence has ‘consistency power’ over a theory if it enables us to construct a bounded interpretation of that theory. An interpretation of V in U is bounded if, for some n , all translations of V -sentences are U -provably equivalent to sentences of complexity less than n . We call a sequential sentence with consistency power over T a pro-consistency statement for T (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantifier-free versions of first order logic and their psychological significance.Jan Mycielski - 1992 - Journal of Philosophical Logic 21 (2):125 - 147.
    Download  
     
    Export citation  
     
    Bookmark   2 citations