Switch to: References

Add citations

You must login to add citations.
  1. Computational complexity for bounded distributive lattices with negation.Dmitry Shkatov & C. J. Van Alten - 2021 - Annals of Pure and Applied Logic 172 (7):102962.
    We study the computational complexity of the universal and quasi-equational theories of classes of bounded distributive lattices with a negation operation, i.e., a unary operation satisfying a subset of the properties of the Boolean negation. The upper bounds are obtained through the use of partial algebras. The lower bounds are either inherited from the equational theory of bounded distributive lattices or obtained through a reduction of a global satisfiability problem for a suitable system of propositional modal logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Proof Compression and NP Versus PSPACE II.Lew Gordeev & Edward Hermann Haeusler - 2020 - Bulletin of the Section of Logic 49 (3):213-230.
    We upgrade [3] to a complete proof of the conjecture NP = PSPACE that is known as one of the fundamental open problems in the mathematical theory of computational complexity; this proof is based on [2]. Since minimal propositional logic is known to be PSPACE complete, while PSPACE to include NP, it suffices to show that every valid purely implicational formula ρ has a proof whose weight and time complexity of the provability involved are both polynomial in the weight of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The decision problem of provability logic with only one atom.Vítězslav Švejdar - 2003 - Archive for Mathematical Logic 42 (8):763-768.
    The decision problem for provability logic remains PSPACE-complete even if the number of propositional atoms is restricted to one.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Proof Compression and NP Versus PSPACE.L. Gordeev & E. H. Haeusler - 2019 - Studia Logica 107 (1):53-83.
    We show that arbitrary tautologies of Johansson’s minimal propositional logic are provable by “small” polynomial-size dag-like natural deductions in Prawitz’s system for minimal propositional logic. These “small” deductions arise from standard “large” tree-like inputs by horizontal dag-like compression that is obtained by merging distinct nodes labeled with identical formulas occurring in horizontal sections of deductions involved. The underlying geometric idea: if the height, h(∂), and the total number of distinct formulas, ϕ(∂), of a given tree-like deduction ∂ of a minimal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations