Switch to: References

Add citations

You must login to add citations.
  1. Incompatible bounded category forcing axioms.David Asperó & Matteo Viale - 2022 - Journal of Mathematical Logic 22 (2).
    Journal of Mathematical Logic, Volume 22, Issue 02, August 2022. We introduce bounded category forcing axioms for well-behaved classes [math]. These are strong forms of bounded forcing axioms which completely decide the theory of some initial segment of the universe [math] modulo forcing in [math], for some cardinal [math] naturally associated to [math]. These axioms naturally extend projective absoluteness for arbitrary set-forcing — in this situation [math] — to classes [math] with [math]. Unlike projective absoluteness, these higher bounded category forcing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a class of maximality principles.Daisuke Ikegami & Nam Trang - 2018 - Archive for Mathematical Logic 57 (5-6):713-725.
    We study various classes of maximality principles, \\), introduced by Hamkins :527–550, 2003), where \ defines a class of forcing posets and \ is an infinite cardinal. We explore the consistency strength and the relationship of \\) with various forcing axioms when \. In particular, we give a characterization of bounded forcing axioms for a class of forcings \ in terms of maximality principles MP\\) for \ formulas. A significant part of the paper is devoted to studying the principle MP\\) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Second order arithmetic as the model companion of set theory.Giorgio Venturi & Matteo Viale - 2023 - Archive for Mathematical Logic 62 (1):29-53.
    This is an introductory paper to a series of results linking generic absoluteness results for second and third order number theory to the model theoretic notion of model companionship. Specifically we develop here a general framework linking Woodin’s generic absoluteness results for second order number theory and the theory of universally Baire sets to model companionship and show that (with the required care in details) a $$\Pi _2$$ -property formalized in an appropriate language for second order number theory is forcible (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Model Companionship Can Say About the Continuum Problem.Giorgio Venturi & Matteo Viale - 2024 - Review of Symbolic Logic 17 (2):546-585.
    We present recent results on the model companions of set theory, placing them in the context of a current debate in the philosophy of mathematics. We start by describing the dependence of the notion of model companionship on the signature, and then we analyze this dependence in the specific case of set theory. We argue that the most natural model companions of set theory describe (as the signature in which we axiomatize set theory varies) theories of $H_{\kappa ^+}$, as $\kappa (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absoluteness via resurrection.Giorgio Audrito & Matteo Viale - 2017 - Journal of Mathematical Logic 17 (2):1750005.
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms for a class of forcings Γ and a given ordinal α), and show that RAω implies generic absoluteness for the first-order theory of Hγ+ with respect to forcings in Γ preserving the axiom, where γ = γΓ is a cardinal which depends on Γ. We also prove that the consistency strength of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Foundation of Mathematics between Theory and Practice.Giorgio Venturi - 2014 - Philosophia Scientiae 18 (1):45-80.
    In this article I propose to look at set theory not only as a founda­tion of mathematics in a traditional sense, but as a foundation for mathemat­ical practice. For this purpose I distinguish between a standard, ontological, set theoretical foundation that aims to find a set theoretical surrogate to every mathematical object, and a practical one that tries to explain mathematical phenomena, giving necessary and sufficient conditions for the proof of mathematical propositions. I will present some example of this use (...)
    Download  
     
    Export citation  
     
    Bookmark