Switch to: References

Add citations

You must login to add citations.
  1. Omitting Types in an Intermediate Logic.Seyed-Mohammad Bagheri & Massoud Pourmahdian - 2011 - Studia Logica 97 (3):319-328.
    We prove an omitting types theorem and one direction of the related Ryll-Nardzewski theorem for semi-classical theories introduced in [2].
    Download  
     
    Export citation  
     
    Bookmark  
  • Back and Forth Between First-Order Kripke Models.Tomasz Połacik - 2008 - Logic Journal of the IGPL 16 (4):335-355.
    We introduce the notion of bisimulation for first-order Kripke models. It is defined as a relation that satisfies certain zig-zag conditions involving back-and-forth moves between nodes of Kripke models and, simultaneously, between the domains of their underlying structures. As one of our main results, we prove that if two Kripke models bisimulate to a certain degree, then they are logically equivalent with respect to the class of formulae of the appropriate complexity. Two applications of the notion introduced in the paper (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Games and Cardinalities in Inquisitive First-Order Logic.Gianluca Grilletti & Ivano Ciardelli - 2023 - Review of Symbolic Logic 16 (1):241-267.
    Inquisitive first-order logic, InqBQ, is a system which extends classical first-order logic with formulas expressing questions. From a mathematical point of view, formulas in this logic express properties of sets of relational structures. This paper makes two contributions to the study of this logic. First, we describe an Ehrenfeucht–Fraïssé game for InqBQ and show that it characterizes the distinguishing power of the logic. Second, we use the game to study cardinality quantifiers in the inquisitive setting. That is, we study what (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some preservation theorems in an intermediate logic.Seyed M. Bagheri - 2006 - Mathematical Logic Quarterly 52 (2):125-133.
    We prove some preservation theorems concerning inductive and model-complete theories in the framework of semi-classical logic introduced in [1].
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some results on Kripke models over an arbitrary fixed frame.Seyed Mohammad Bagheri & Morteza Moniri - 2003 - Mathematical Logic Quarterly 49 (5):479-484.
    We study the relations of being substructure and elementary substructure between Kripke models of intuitionistic predicate logic with the same arbitrary frame. We prove analogues of Tarski's test and Löwenheim-Skolem's theorems as determined by our definitions. The relations between corresponding worlds of two Kripke models [MATHEMATICAL SCRIPT CAPITAL K] ⪯ [MATHEMATICAL SCRIPT CAPITAL K]′ are studied.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Elementary Amalgamation and Joint Embedding Property for Intermediate Logics.Seyed Bagheri & Massoud Pourmahdian - 2008 - Logic Journal of the IGPL 16 (6):561-583.
    In this paper we study the elementary amalgamation property and the joint embedding property for intermediate logics. We point out the class of Kripke structures with elementary embedding can be viewed within abstract elementary class framework. Following this approach, both elementary AP and JEP can be considered quite naturally for intermediate logics. The main method for our investigations is the extension of Morleyization method from classical model theory to Kripke model theory. The almost-classical logic and almost-classical models have been defined. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From forcing to satisfaction in Kripke models of intuitionistic predicate logic.Maryam Abiri, Morteza Moniri & Mostafa Zaare - 2018 - Logic Journal of the IGPL 26 (5):464-474.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extensions of Kripke models.Mostafa Zaare - 2017 - Logic Journal of the IGPL 25 (5):697-699.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Semantic Approach to Conservativity.Tomasz Połacik - 2016 - Studia Logica 104 (2):235-248.
    The aim of this paper is to describe from a semantic perspective the problem of conservativity of classical first-order theories over their intuitionistic counterparts. In particular, we describe a class of formulae for which such conservativity results can be proven in case of any intuitionistic theory T which is complete with respect to a class of T-normal Kripke models. We also prove conservativity results for intuitionistic theories which are closed under the Friedman translation and complete with respect to a class (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Preservation theorems for Kripke models.Morteza Moniri & Mostafa Zaare - 2009 - Mathematical Logic Quarterly 55 (2):177-184.
    There are several ways for defining the notion submodel for Kripke models of intuitionistic first‐order logic. In our approach a Kripke model A is a submodel of a Kripke model B if they have the same frame and for each two corresponding worlds Aα and Bα of them, Aα is a subset of Bα and forcing of atomic formulas with parameters in the smaller one, in A and B, are the same. In this case, B is called an extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Homomorphisms and chains of Kripke models.Morteza Moniri & Mostafa Zaare - 2011 - Archive for Mathematical Logic 50 (3-4):431-443.
    In this paper we define a suitable version of the notion of homomorphism for Kripke models of intuitionistic first-order logic and characterize theories that are preserved under images and also those that are preserved under inverse images of homomorphisms. Moreover, we define a notion of union of chain for Kripke models and define a class of formulas that is preserved in unions of chains. We also define similar classes of formulas and investigate their behavior in Kripke models. An application to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Syntactic Preservation Theorems for Intuitionistic Predicate Logic.Jonathan Fleischmann - 2010 - Notre Dame Journal of Formal Logic 51 (2):225-245.
    We define notions of homomorphism, submodel, and sandwich of Kripke models, and we define two syntactic operators analogous to universal and existential closure. Then we prove an intuitionistic analogue of the generalized (dual of the) Lyndon-Łoś-Tarski Theorem, which characterizes the sentences preserved under inverse images of homomorphisms of Kripke models, an intuitionistic analogue of the generalized Łoś-Tarski Theorem, which characterizes the sentences preserved under submodels of Kripke models, and an intuitionistic analogue of the generalized Keisler Sandwich Theorem, which characterizes the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations