Switch to: References

Add citations

You must login to add citations.
  1. Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof theory for admissible rules.Rosalie Iemhoff & George Metcalfe - 2009 - Annals of Pure and Applied Logic 159 (1-2):171-186.
    Admissible rules of a logic are those rules under which the set of theorems of the logic is closed. In this paper, a Gentzen-style framework is introduced for analytic proof systems that derive admissible rules of non-classical logics. While Gentzen systems for derivability treat sequents as basic objects, for admissibility, the basic objects are sequent rules. Proof systems are defined here for admissible rules of classes of modal logics, including K4, S4, and GL, and also Intuitionistic Logic IPC. With minor (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Intermediate Logics and the de Jongh property.Dick de Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Closed fragments of provability logics of constructive theories.Albert Visser - 2008 - Journal of Symbolic Logic 73 (3):1081-1096.
    In this paper we give a new proof of the characterization of the closed fragment of the provability logic of Heyting's Arithmetic. We also provide a characterization of the closed fragment of the provability logic of Heyting's Arithmetic plus Markov's Principle and Heyting's Arithmetic plus Primitive Recursive Markov's Principle.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Admissibility and refutation: some characterisations of intermediate logics.Jeroen P. Goudsmit - 2014 - Archive for Mathematical Logic 53 (7-8):779-808.
    Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Basic Intuitionistic Logic of Proofs.Sergei Artemov & Rosalie Iemhoff - 2007 - Journal of Symbolic Logic 72 (2):439 - 451.
    The language of the basic logic of proofs extends the usual propositional language by forming sentences of the sort x is a proof of F for any sentence F. In this paper a complete axiomatization for the basic logic of proofs in Heyting Arithmetic HA was found.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Predicate Logics of Constructive Arithmetical Theories.Albert Visser - 2006 - Journal of Symbolic Logic 71 (4):1311 - 1326.
    In this paper, we show that the predicate logics of consistent extensions of Heyting's Arithmetic plus Church's Thesis with uniqueness condition are complete $\Pi _{2}^{0}$. Similarly, we show that the predicate logic of HA*, i.e. Heyting's Arithmetic plus the Completeness Principle (for HA*) is complete $\Pi _{2}^{0}$. These results extend the known results due to Valery Plisko. To prove the results we adapt Plisko's method to use Tennenbaum's Theorem to prove 'categoricity of interpretations' under certain assumptions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Weak Lewis Distributive Lattices.Ismael Calomino, Sergio A. Celani & Hernán J. San Martín - forthcoming - Studia Logica:1-41.
    In this paper we study the variety \(\textsf{WL}\) of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the \(\{\vee,\wedge,\Rightarrow,\bot,\top \}\) -fragment of the arithmetical base preservativity logic \(\mathsf {iP^{-}}\). The variety \(\textsf{WL}\) properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Preservativity logic: An analogue of interpretability logic for constructive theories.Rosalie Iemhoff - 2003 - Mathematical Logic Quarterly 49 (3):230-249.
    In this paper we study the modal behavior of Σ-preservativity, an extension of provability which is equivalent to interpretability for classical superarithmetical theories. We explain the connection between the principles of this logic and some well-known properties of HA, like the disjunction property and its admissible rules. We show that the intuitionistic modal logic given by the preservativity principles of HA known so far, is complete with respect to a certain class of frames.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A many-sorted variant of Japaridze’s polymodal provability logic.Gerald Berger, Lev D. Beklemishev & Hans Tompits - 2018 - Logic Journal of the IGPL 26 (5):505-538.
    Download  
     
    Export citation  
     
    Bookmark  
  • Provability logic and the completeness principle.Albert Visser & Jetze Zoethout - 2019 - Annals of Pure and Applied Logic 170 (6):718-753.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The Σ1-provability logic of HA.Mohammad Ardeshir & Mojtaba Mojtahedi - 2018 - Annals of Pure and Applied Logic 169 (10):997-1043.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preservativity logic: An analogue of interpretability logic for constructive theories: An analogue of interpretability logic for constructive theories.Rosalie Iemhoff - 2003 - Mathematical Logic Quarterly 49 (3):230.
    In this paper we study the modal behavior of Σ‐preservativity, an extension of provability which is equivalent to interpretability for classical superarithmetical theories. We explain the connection between the principles of this logic and some well‐known properties of HA, like the disjunction property and its admissible rules. We show that the intuitionistic modal logic given by the preservativity principles of HA known so far, is complete with respect to a certain class of frames.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strictly Positive Fragments of the Provability Logic of Heyting Arithmetic.Ana de Almeida Borges & Joost J. Joosten - forthcoming - Studia Logica:1-33.
    We determine the strictly positive fragment \(\textsf{QPL}^+(\textsf{HA})\) of the quantified provability logic \(\textsf{QPL}(\textsf{HA})\) of Heyting Arithmetic. We show that \(\textsf{QPL}^+(\textsf{HA})\) is decidable and that it coincides with \(\textsf{QPL}^+(\textsf{PA})\), which is the strictly positive fragment of the quantified provability logic of of Peano Arithmetic. This positively resolves a previous conjecture of the authors described in [ 14 ]. On our way to proving these results, we carve out the strictly positive fragment \(\textsf{PL}^+(\textsf{HA})\) of the provability logic \(\textsf{PL}(\textsf{HA})\) of Heyting Arithmetic, provide (...)
    Download  
     
    Export citation  
     
    Bookmark