Switch to: References

Citations of:

The Formalist Foundations of Mathematics

In P. Benacerraf H. Putnam (ed.), Philosophy of Mathematics. Prentice-Hall (1964)

Add citations

You must login to add citations.
  1. Recognizing Mathematics Students as Creative: Mathematical Creativity as Community-Based and Possibility-Expanding.Meghan Riling - 2020 - Journal of Humanistic Mathematics 10 (2).
    Although much creativity research has suggested that creativity is influenced by cultural and social factors, these have been minimally explored in the context of mathematics and mathematics learning. This problematically limits who is seen as mathematically creative and who can enter the discipline of mathematics. This paper proposes a framework of creativity that is based in what it means to know or do mathematics and accepts that creativity is something that can be nurtured in all students. Prominent mathematical epistemologies held (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Alan Turing and the mathematical objection.Gualtiero Piccinini - 2003 - Minds and Machines 13 (1):23-48.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ¿Es necesariamente verdadero que si un enunciado geométrico es verdadero, es necesariamente verdadero?Emilio Méndez Pinto - 2019 - Dianoia 64 (82):61-84.
    En este ensayo respondo negativamente a la pregunta del título al sostener que el enunciado “La suma de los ángulos internos de un triángulo es igual a 180°” es contingentemente verdadero. Para ello, intento refutar la tesis de Ramsey de que las verdades geométricas necesariamente son verdades necesarias, así como la tesis de Kripke de que no puede haber proposiciones matemáticas contingentemente verdaderas. Además, recurriendo a la concepción fregeana sobre lo a priori y lo a posteriori, sostengo que hay verdades (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic and Aesthetics in Epistemology.Mildred Rose Payne - 1990 - Dissertation, University of Hawai'i
    The purpose of this dissertation is to present historical evidence in favor of the thesis that many forms of dichotomy appearing in the history of epistemology are related to the duality represented by the mathematical concepts of continuity and discreteness. Parts 1 and 2 give a descriptive and historical account of epistemological dichotomies appearing during the development of mathematics and logic. In part 3, the implications of these dichotomies for general philosophy are explored by means of a collage of analytic, (...)
    Download  
     
    Export citation  
     
    Bookmark