Switch to: References

Add citations

You must login to add citations.
  1. What the heck is Logic? Logics-as-formalizations, a nihilistic approach.Aadil Kurji - 2020 - Dissertation,
    Logic is about reasoning, or so the story goes. This thesis looks at the concept of logic, what it is, and what claims of correctness of logics amount to. The concept of logic is not a settled matter, and has not been throughout the history of it as a notion. Tools from conceptual analysis aid in this historical venture. Once the unsettledness of logic is established we see the repercussions in current debates in the philosophy of logic. Much of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On Morita equivalence and interpretability.Paul Anh Mceldowney - 2020 - Review of Symbolic Logic 13 (2):388-415.
    In a recent article, Barrett & Halvorson define a notion of equivalence for first-order theories, which they call “Morita equivalence.” To argue that Morita equivalence is a reasonable measure of “theoretical equivalence,” they make use of the claim that Morita extensions “say no more” than the theories they are extending. The goal of this article is to challenge this central claim by raising objections to their argument for it and by showing why there is good reason to think that the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Strength of Abstraction with Predicative Comprehension.Sean Walsh - 2016 - Bulletin of Symbolic Logic 22 (1):105–120.
    Frege's theorem says that second-order Peano arithmetic is interpretable in Hume's Principle and full impredicative comprehension. Hume's Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege's Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relative categoricity and abstraction principles.Sean Walsh & Sean Ebels-Duggan - 2015 - Review of Symbolic Logic 8 (3):572-606.
    Many recent writers in the philosophy of mathematics have put great weight on the relative categoricity of the traditional axiomatizations of our foundational theories of arithmetic and set theory. Another great enterprise in contemporary philosophy of mathematics has been Wright's and Hale's project of founding mathematics on abstraction principles. In earlier work, it was noted that one traditional abstraction principle, namely Hume's Principle, had a certain relative categoricity property, which here we term natural relative categoricity. In this paper, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Naturalizing indispensability: a rejoinder to ‘The varieties of indispensability arguments’.Henri Galinon - 2016 - Synthese 193 (2).
    In ‘The varieties of indispensability arguments’ Marco Panza and Andrea Sereni argue that, for any clear notion of indispensability, either there is no conclusive argument for the thesis that mathematics is indispensable to science, or the notion of indispensability at hand does not support mathematical realism. In this paper, I shall not object to this main thesis directly. I shall instead try to assess in a naturalistic spirit a family of objections the authors make along the way to the use (...)
    Download  
     
    Export citation  
     
    Bookmark