Switch to: References

Add citations

You must login to add citations.
  1. Disquotationalism and the Compositional Principles.Richard Kimberly Heck - 2021 - In Carlo Nicolai & Johannes Stern (eds.), Modes of Truth: The Unified Approach to Truth, Modality, and Paradox. New York, NY: Routledge. pp. 105--50.
    What Bar-On and Simmons call 'Conceptual Deflationism' is the thesis that truth is a 'thin' concept in the sense that it is not suited to play any explanatory role in our scientific theorizing. One obvious place it might play such a role is in semantics, so disquotationalists have been widely concerned to argued that 'compositional principles', such as -/- (C) A conjunction is true iff its conjuncts are true -/- are ultimately quite trivial and, more generally, that semantic theorists have (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Logical Strength of Compositional Principles.Richard Heck - 2018 - Notre Dame Journal of Formal Logic 59 (1):1-33.
    This paper investigates a set of issues connected with the so-called conservativeness argument against deflationism. Although I do not defend that argument, I think the discussion of it has raised some interesting questions about whether what I call “compositional principles,” such as “a conjunction is true iff its conjuncts are true,” have substantial content or are in some sense logically trivial. The paper presents a series of results that purport to show that the compositional principles for a first-order language, taken (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Strength of Truth-Theories.Richard Heck - manuscript
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? It turns out that, in a wide range of cases, we can get some nice answers to this question, but only if we work in a framework that is somewhat different from those usually employed in discussions of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Bibliography of Hao Wang.Marie Grossi, Montgomery Link, Katalin Makkai & Charles Parsons - 1998 - Philosophia Mathematica 6 (1):25-38.
    A listing is given of the published writings of the logician and philosopher Hao Wang , which includes all items known to the authors, including writings in Chinese and translations into other languages.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In defense of the semantic definition of truth.Jan woleński - 2001 - Synthese 126 (1-2):67 - 90.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • More on Putnam and Tarski.Panu Raatikainen - 2003 - Synthese 135 (1):37 - 47.
    Hilary Putnam's famous arguments criticizing Tarski's theory of truth are evaluated. It is argued that they do not succeed to undermine Tarski's approach. One of the arguments is based on the problematic idea of a false instance of T-schema. The other ignores various issues essential for Tarski's setting such as language-relativity of truth definition.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tolerance and metalanguages in carnap'slogical syntax of language.David Devidi & Graham Solomon - 1995 - Synthese 103 (1):123 - 139.
    Michael Friedman has recently argued that Carnap'sLogical Syntax of Language is fundamentally flawed in a way that reveals the ultimate failure of logical positivism. Friedman's argument depends crucially on two claims: (1) that Carnap was committed to the view that there is a universal metalanguage and (2) that given what Carnap wanted from a metalanguage, in particular given that he wanted a definition of analytic for an object language, he was in fact committed to a hierarchy of stronger and stronger (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Tarski on “essentially richer” metalanguages.David DeVidi & Graham Solomon - 1999 - Journal of Philosophical Logic 28 (1):1-28.
    It is well known that Tarski proved a result which can be stated roughly as: no sufficiently rich, consistent, classical language can contain its own truth definition. Tarski's way around this problem is to deal with two languages at a time, an object language for which we are defining truth and a metalanguage in which the definition occurs. An obvious question then is: under what conditions can we construct a definition of truth for a given object language. Tarski claims that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations