Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Turingův test: filozofické aspekty umělé inteligence.Filip Tvrdý - 2011 - Dissertation, Palacky University
    Disertační práce se zabývá problematikou připisování myšlení jiným entitám, a to pomocí imitační hry navržené v roce 1950 britským filosofem Alanem Turingem. Jeho kritérium, známé v dějinách filosofie jako Turingův test, je podrobeno detailní analýze. Práce popisuje nejen původní námitky samotného Turinga, ale především pozdější diskuse v druhé polovině 20. století. Největší pozornost je věnována těmto kritikám: Lucasova matematická námitka využívající Gödelovu větu o neúplnosti, Searlův argument čínského pokoje konstatující nedostatečnost syntaxe pro sémantiku, Blockův návrh na použití brutální síly pro (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inquiries into Cognition: Wittgenstein’s Language-Games and Peirce’s Semeiosis for the Philosophy of Cognition.Andrey Pukhaev - 2013 - Dissertation, Gregorian University
    SUMMARY Major theories of philosophical psychology and philosophy of mind are examined on the basis of the fundamental questions of ontology, metaphysics, epistemology, semantics and logic. The result is the choice between language of eliminative reductionism and dualism, neither of which answers properly the relation between mind and body. In the search for a non–dualistic and non–reductive language, Wittgenstein’s notion of language–games as the representative links between language and the world is considered together with Peirce’s semeiosis of cognition. The result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical realism and gödel's incompleteness theorems.Richard Tieszen - 1994 - Philosophia Mathematica 2 (3):177-201.
    In this paper I argue that it is more difficult to see how Godel's incompleteness theorems and related consistency proofs for formal systems are consistent with the views of formalists, mechanists and traditional intuitionists than it is to see how they are consistent with a particular form of mathematical realism. If the incompleteness theorems and consistency proofs are better explained by this form of realism then we can also see how there is room for skepticism about Church's Thesis and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic and limits of knowledge and truth.Patrick Grim - 1988 - Noûs 22 (3):341-367.
    Though my ultimate concern is with issues in epistemology and metaphysics, let me phrase the central question I will pursue in terms evocative of philosophy of religion: What are the implications of our logic-in particular, of Cantor and G6del-for the possibility of omniscience?
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Lucas' number is finally up.G. Lee Bowie - 1982 - Journal of Philosophical Logic 11 (3):279-85.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Menschen, maschinen und gödels theorem.Rosemarie Rheinwald - 1991 - Erkenntnis 34 (1):1 - 21.
    Mechanism is the thesis that men can be considered as machines, that there is no essential difference between minds and machines.John Lucas has argued that it is a consequence of Gödel's theorem that mechanism is false. Men cannot be considered as machines, because the intellectual capacities of men are superior to that of any machine. Lucas claims that we can do something that no machine can do-namely to produce as true the Gödel-formula of any given machine. But no machine can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the human mind a Turing machine?D. King - 1996 - Synthese 108 (3):379-89.
    In this paper I discuss the topics of mechanism and algorithmicity. I emphasise that a characterisation of algorithmicity such as the Turing machine is iterative; and I argue that if the human mind can solve problems that no Turing machine can, the mind must depend on some non-iterative principle — in fact, Cantor's second principle of generation, a principle of the actual infinite rather than the potential infinite of Turing machines. But as there has been theorisation that all physical systems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metamathematics and the philosophy of mind: A rejoinder.John R. Lucas - 1971 - Philosophy of Science 38 (2):310-13.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reflexive consistency proofs and gödel's second theorem.Paul Sagal - 1989 - Philosophia Mathematica (1):58-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Metamathematical criteria for minds and machines.Dale Jacquette - 1987 - Erkenntnis 27 (1):1-16.
    Download  
     
    Export citation  
     
    Bookmark   3 citations