Switch to: References

Citations of:

Plato's Philosophy of Mathematics

Philosophy 32 (123):369-370 (1955)

Add citations

You must login to add citations.
  1. Mathematics, Mental Imagery, and Ontology: A New Interpretation of the Divided Line.Miriam Byrd - 2018 - International Journal of the Platonic Tradition 12 (2):111-131.
    This paper presents a new interpretation of the objects of dianoia in Plato’s divided line, contending that they are mental images of the Forms hypothesized by the dianoetic reasoner. The paper is divided into two parts. A survey of the contemporary debate over the identity of the objects of dianoia yields three criteria a successful interpretation should meet. Then, it is argued that the mental images interpretation, in addition to proving consistent with key passages in the middle books of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Objetos matemáticos sensibles y objetos Matemáticos inteligibles.Víctor Hugo Chica Pérez, Luis F. Echeverri & Edwin Zarrazola - 2016 - Estudios de Filosofía (Universidad de Antioquia) 54:187-205.
    Download  
     
    Export citation  
     
    Bookmark  
  • How applied mathematics became pure.Penelope Maddy - 2008 - Review of Symbolic Logic 1 (1):16-41.
    My goal here is to explore the relationship between pure and applied mathematics and then, eventually, to draw a few morals for both. In particular, I hope to show that this relationship has not been static, that the historical rise of pure mathematics has coincided with a gradual shift in our understanding of how mathematics works in application to the world. In some circles today, it is held that historical developments of this sort simply represent changes in fashion, or in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Platonic number in the parmenides and metaphysics XIII.Dougal Blyth - 2000 - International Journal of Philosophical Studies 8 (1):23 – 45.
    I argue here that a properly Platonic theory of the nature of number is still viable today. By properly Platonic, I mean one consistent with Plato's own theory, with appropriate extensions to take into account subsequent developments in mathematics. At Parmenides 143a-4a the existence of numbers is proven from our capacity to count, whereby I establish as Plato's the theory that numbers are originally ordinal, a sequence of forms differentiated by position. I defend and interpret Aristotle's report of a Platonic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Intermediates through Eidetic Numbers: Plato on the Limits of Counting.Andy German - 2018 - Plato Journal 18:111-124.
    Many have argued that Plato’s intermediates are not independent entities. Rather, they exemplify the incapacity of discursive thought to cognizing Forms. But just what does this incapacity consist in? Any successful answer will require going beyond the intermediates themselves to another aspect of Plato’s mathematical thought - his attribution of a quasi-numerical structure to Forms. For our purposes, the most penetrating account of eidetic numbers is Jacob Klein’s, who saw clearly that eidetic numbers are part of Plato’s inquiry into the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aristóteles historiador: El examen crítico de la teoría platónica de las Ideas.Silvana Gabriela Di Camillo - 2012 - Buenos Aires, Argentina: Editorial de la Facultad de Filosofía y Letras Universidad de Buenos Aires.
    La exposición y crítica de las doctrinas antiguas tiene un lugar importante en los escritos de Aristóteles. Sin embargo, ciertas dudas se han vuelto corrientes acerca de la confiabilidad de sus descripciones. Más aún, se ha sostenido que Aristóteles deforma la comprensión histórica a través de la introducción de conceptos y términos propios. En este libro se aborda el problema a través de un análisis de las críticas que Aristóteles dirige a la teoría platónica de las Ideas, que permite explicar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Foundations of Greek Arithmetic.Holger A. Leuz - 2009 - History of Philosophy & Logical Analysis 12 (1):13-47.
    The aim of this essay is to develop a formal reconstruction of Greek arithmetic. The reconstruction is based on textual evidence which comes mainly from Euclid, but also from passages in the texts of Plato and Aristotle. Following Paul Pritchard’s investigation into the meaning of the Greek term arithmos, the reconstruction will be mereological rather than set-theoretical. It is shown that the reconstructed system gives rise to an arithmetic comparable in logical strength to Robinson arithmetic. Our reconstructed Greek arithmetic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Relationship between Hypotheses and Images in the Mathematical Subsection of the Divided Line of Plato's Republic.Moon-Heum Yang - 2005 - Dialogue 44 (2):285-312.
    RésuméEn expliquant la relation entre hypothèses et images dans l'analogie de la ligne du livre Vl de laRépubliquede Platon, je m'attarde d'abordsur l'élucidation platonicienne de la nature des mathématiques telle que la conçoit le mathématicien lui-même. Je poursuis avec une critique des interprétations traditionnelles de cette relation, qui partent de l'assomption douteuse que les mathématiques s'occupent des Formes platoniciennes. Pour formuler mon point de vue sur cette relation, j'exploite la notion de «structure». Je montre comment les «hypothèses» comme principes de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hypothetical Inquiry in Plato's Timaeus.Jonathan Edward Griffiths - 2023 - Ancient Philosophy Today 5 (2):156-177.
    This paper re-constructs Plato's ‘philosophy of geometry’ by arguing that he uses a geometrical method of hypothesis in his account of the cosmos’ generation in the Timaeus. Commentators on Plato's philosophy of mathematics often start from Aristotle's report in the Metaphysics that Plato admitted the existence of mathematical objects in-between ( metaxu) Forms and sensible particulars ( Meta. 1.6, 987b14–18). I argue, however, that Plato's interest in mathematics was centred on its methodological usefulness for philosophical inquiry, rather than on questions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philebus.Verity Harte - 2012 - In Associate Editors: Francisco Gonzalez Gerald A. Press (ed.), The Continuum Companion to Plato. Continuum International Publishing Group. pp. 81-83.
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Frege's Relativity Argument?Palle Yourgrau - 1997 - Canadian Journal of Philosophy 27 (2):137-172.
    Sets are multitudes which are also unities. It is surprising that the fact that multitudes are also unities leads to no contradictions: this is the main fact of mathematics.Kurt Gödel (Hao Wang,A Logical Journey: From Gödel to Philosophy)In what sense can something be at the same time one and many? The problem is familiar since Plato (for example,Republic524e). In recent times, Whitehead and Russell, inPrincipia Mathematica,have been struck by the difficulty of the problem: ‘If there is such an object as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Continuity and idealizability of approximate generalizations.Ernest W. Adams - 1986 - Synthese 67 (3):439 - 476.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gadamer and the Lessons of Arithmetic in Plato’s Hippias Major.John V. Garner - 2017 - Meta: Research in Hermeneutics, Phenomenology, and Practical Philosophy 9 (1):105-136.
    In the 'Hippias Major' Socrates uses a counter-example to oppose Hippias‘s view that parts and wholes always have a "continuous" nature. Socrates argues, for example, that even-numbered groups might be made of parts with the opposite character, i.e. odd. As Gadamer has shown, Socrates often uses such examples as a model for understanding language and definitions: numbers and definitions both draw disparate elements into a sum-whole differing from the parts. In this paper I follow Gadamer‘s suggestion that we should focus (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • El argumento de" Lo Uno sobre lo múltiple" en el Tratado sobre las Ideas de Aristóteles.Silvana Gabriela Di Camillo - 2010 - Synthesis (la Plata) 17:47-63.
    Download  
     
    Export citation  
     
    Bookmark