Switch to: References

Add citations

You must login to add citations.
  1. A note on da Costa-Doria “exotic formalizations”.L. Gordeev - 2010 - Archive for Mathematical Logic 49 (7-8):813-821.
    We analyze N. C. A. da Costa and F. A. Doria’s “exotic formalization” of the conjecture P = NP [3–7]. For any standard axiomatic PA extension T and any number-theoretic sentence ${\varphi }$ , we let ${\varphi ^{\star} := \varphi \vee \lnot \mathsf{Con}\left( \mathsf{T}\right)}$ and prove the following “exotic” inferences 1–3. 1. ${\mathsf{T}+\varphi ^{\star}}$ is consistent, if so is T, 2. ${\mathsf{T}+\varphi}$ is consistent, provided that ${\mathsf{T}+\varphi ^{\star}}$ is ω-consistent, 3. ${\mathsf{T}+\varphi}$ is consistent, provided that T is consistent and has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Phase transitions of iterated Higman-style well-partial-orderings.Lev Gordeev & Andreas Weiermann - 2012 - Archive for Mathematical Logic 51 (1-2):127-161.
    We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$$\end{document} in question, d > 1, we fix a natural extension of Peano Arithmetic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T \supseteq \sf{PA}}$$\end{document}, that proves the corresponding second-order sentence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{WPO}\left({\rm (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.
    Gödel’s first incompleteness result from 1931 states that there are true assertions about the natural numbers which do not follow from the Peano axioms. Since 1931 many researchers have been looking for natural examples of such assertions and breakthroughs were obtained in the seventies by Jeff Paris [Some independence results for Peano arithmetic. J. Symbolic Logic 43 725–731] , Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977] and Laurie Kirby [L. Kirby, Jeff Paris, Accessible independence results for Peano Arithmetic, Bull. of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations