Switch to: References

Add citations

You must login to add citations.
  1. Unprovability threshold for the planar graph minor theorem.Andrey Bovykin - 2010 - Annals of Pure and Applied Logic 162 (3):175-181.
    This note is part of the implementation of a programme in foundations of mathematics to find exact threshold versions of all mathematical unprovability results known so far, a programme initiated by Weiermann. Here we find the exact versions of unprovability of the finite graph minor theorem with growth rate condition restricted to planar graphs, connected planar graphs and graphs embeddable into a given surface, assuming an unproved conjecture : ‘there is a number a>0 such that for all k≥3, and all (...))
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pure Σ2-elementarity beyond the core.Gunnar Wilken - 2021 - Annals of Pure and Applied Logic 172 (9):103001.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Phase transitions of iterated Higman-style well-partial-orderings.Lev Gordeev & Andreas Weiermann - 2012 - Archive for Mathematical Logic 51 (1-2):127-161.
    We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$$\end{document} in question, d > 1, we fix a natural extension of Peano Arithmetic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T \supseteq \sf{PA}}$$\end{document}, that proves the corresponding second-order sentence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{WPO}\left({\rm (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hyperations, Veblen progressions and transfinite iteration of ordinal functions.David Fernández-Duque & Joost J. Joosten - 2013 - Annals of Pure and Applied Logic 164 (7-8):785-801.
    Ordinal functions may be iterated transfinitely in a natural way by taking pointwise limits at limit stages. However, this has disadvantages, especially when working in the class of normal functions, as pointwise limits do not preserve normality. To this end we present an alternative method to assign to each normal function f a family of normal functions Hyp[f]=〈fξ〉ξ∈OnHyp[f]=〈fξ〉ξ∈On, called its hyperation, in such a way that f0=idf0=id, f1=ff1=f and fα+β=fα∘fβfα+β=fα∘fβ for all α, β.Hyperations are a refinement of the Veblen hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations