Switch to: References

Add citations

You must login to add citations.
  1. Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to Believe Long Conjunctions of Beliefs: Probability, Quasi-Dogmatism and Contextualism.Stefano Bonzio, Gustavo Cevolani & Tommaso Flaminio - 2021 - Erkenntnis 88 (3):965-990.
    According to the so-called Lockean thesis, a rational agent believes a proposition just in case its probability is sufficiently high, i.e., greater than some suitably fixed threshold. The Preface paradox is usually taken to show that the Lockean thesis is untenable, if one also assumes that rational agents should believe the conjunction of their own beliefs: high probability and rational belief are in a sense incompatible. In this paper, we show that this is not the case in general. More precisely, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Basis for AGM Revision in Bayesian Probability Revision.Sven Ove Hansson - 2023 - Journal of Philosophical Logic 52 (6):1535-1559.
    In standard Bayesian probability revision, the adoption of full beliefs (propositions with probability 1) is irreversible. Once an agent has full belief in a proposition, no subsequent revision can remove that belief. This is an unrealistic feature, and it also makes probability revision incompatible with belief change theory, which focuses on how the set of full beliefs is modified through both additions and retractions. This problem in probability theory can be solved in a model that (i) lets the codomain of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Revising Probabilities and Full Beliefs.Sven Ove Hansson - 2020 - Journal of Philosophical Logic 49 (5):1005-1039.
    A new formal model of belief dynamics is proposed, in which the epistemic agent has both probabilistic beliefs and full beliefs. The agent has full belief in a proposition if and only if she considers the probability that it is false to be so close to zero that she chooses to disregard that probability. She treats such a proposition as having the probability 1, but, importantly, she is still willing and able to revise that probability assignment if she receives information (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Making Ado Without Expectations.Mark Colyvan & Alan Hájek - 2016 - Mind 125 (499):829-857.
    This paper is a response to Paul Bartha’s ‘Making Do Without Expectations’. We provide an assessment of the strengths and limitations of two notable extensions of standard decision theory: relative expectation theory and Paul Bartha’s relative utility theory. These extensions are designed to provide intuitive answers to some well-known problems in decision theory involving gaps in expectations. We argue that both RET and RUT go some way towards providing solutions to the problems in question but neither extension solves all the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Comparative Expectations.Arthur Paul Pedersen - 2014 - Studia Logica 102 (4):811-848.
    I introduce a mathematical account of expectation based on a qualitative criterion of coherence for qualitative comparisons between gambles (or random quantities). The qualitative comparisons may be interpreted as an agent’s comparative preference judgments over options or more directly as an agent’s comparative expectation judgments over random quantities. The criterion of coherence is reminiscent of de Finetti’s quantitative criterion of coherence for betting, yet it does not impose an Archimedean condition on an agent’s comparative judgments, it does not require the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Additive representation of separable preferences over infinite products.Marcus Pivato - 2014 - Theory and Decision 77 (1):31-83.
    Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }$$\end{document} be a set of outcomes, and let I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} on XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }^\mathcal{I }$$\end{document} admits an additive representation. That is: there exists a linearly ordered abelian group R\documentclass[12pt]{minimal} (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • New theory about old evidence. A framework for open-minded Bayesianism.Sylvia9 Wenmackers & Jan-Willem Romeijn - 2016 - Synthese 193 (4).
    We present a conservative extension of a Bayesian account of confirmation that can deal with the problem of old evidence and new theories. So-called open-minded Bayesianism challenges the assumption—implicit in standard Bayesianism—that the correct empirical hypothesis is among the ones currently under consideration. It requires the inclusion of a catch-all hypothesis, which is characterized by means of sets of probability assignments. Upon the introduction of a new theory, the former catch-all is decomposed into a new empirical hypothesis and a new (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations