Switch to: References

Citations of:

Comparative Expectations

Studia Logica 102 (4):811-848 (2014)

Add citations

You must login to add citations.
  1. How Infinitely Valuable Could a Person Be?Levi Durham & Alexander Pruss - 2024 - Philosophia 52 (4):1185-1201.
    Many have the intuition that human persons are both extremely and equally valuable. This seeming extremity and equality of vale is puzzling: if overall value is the sum of one’s final value and instrumental value, how could it be that persons share the same extreme value? One way that we can solve the Value Puzzle is by following Andrew Bailey and Josh Rasmussen. Philosophy and Phenomenological Research, 103, 264–277 (2020) and accepting that persons have infinite final value. But there are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Primitive conditional probabilities, subset relations and comparative regularity.Joshua Thong - 2023 - Analysis 84 (3):547–555.
    Rational agents seem more confident in any possible event than in an impossible event. But if rational credences are real-valued, then there are some possible events that are assigned 0 credence nonetheless. How do we differentiate these events from impossible events then when we order events? de Finetti (1975), Hájek (2012) and Easwaran (2014) suggest that when ordering events, conditional credences and subset relations are as relevant as unconditional credences. I present a counterexample to all their proposals in this paper. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Epistemic Decision Theory's Reckoning.Conor Mayo-Wilson & Gregory Wheeler - manuscript
    Epistemic decision theory (EDT) employs the mathematical tools of rational choice theory to justify epistemic norms, including probabilism, conditionalization, and the Principal Principle, among others. Practitioners of EDT endorse two theses: (1) epistemic value is distinct from subjective preference, and (2) belief and epistemic value can be numerically quantified. We argue the first thesis, which we call epistemic puritanism, undermines the second.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Comparative Probabilities.Jason Konek - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 267-348.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Hyperintensionality and Normativity.Federico L. G. Faroldi - 2019 - Cham, Switzerland: Springer Verlag.
    Presenting the first comprehensive, in-depth study of hyperintensionality, this book equips readers with the basic tools needed to appreciate some of current and future debates in the philosophy of language, semantics, and metaphysics. After introducing and explaining the major approaches to hyperintensionality found in the literature, the book tackles its systematic connections to normativity and offers some contributions to the current debates. The book offers undergraduate and graduate students an essential introduction to the topic, while also helping professionals in related (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Logic and Probability: Reasoning in Uncertain Environments – Introduction to the Special Issue.Matthias Unterhuber & Gerhard Schurz - 2014 - Studia Logica 102 (4):663-671.
    The current special issue focuses on logical and probabilistic approaches to reasoning in uncertain environments, both from a formal, conceptual and argumentative perspective as well as an empirical point of view. In the present introduction we give an overview of the types of problems addressed by the individual contributions of the special issue, based on fundamental distinctions employed in this area. We furthermore describe some of the general features of the special issue.
    Download  
     
    Export citation  
     
    Bookmark  
  • Desirability foundations of robust rational decision making.Marco Zaffalon & Enrique Miranda - 2018 - Synthese 198 (Suppl 27):6529-6570.
    Recent work has formally linked the traditional axiomatisation of incomplete preferences à la Anscombe-Aumann with the theory of desirability developed in the context of imprecise probability, by showing in particular that they are the very same theory. The equivalence has been established under the constraint that the set of possible prizes is finite. In this paper, we relax such a constraint, thus de facto creating one of the most general theories of rationality and decision making available today. We provide the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pragmatic Considerations on Comparative Probability.Thomas F. Icard - 2016 - Philosophy of Science 83 (3):348-370.
    While pragmatic arguments for numerical probability axioms have received much attention, justifications for axioms of qualitative probability have been less discussed. We offer an argument for the requirement that an agent’s qualitative judgments be probabilistically representable, inspired by, but importantly different from, the Money Pump argument for transitivity of preference and Dutch book arguments for quantitative coherence. The argument is supported by a theorem, to the effect that a subject is systematically susceptible to dominance given her preferred acts, if and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Imprecise Probabilities.Seamus Bradley - 2019 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Triangulating non-archimedean probability.Hazel Brickhill & Leon Horsten - 2018 - Review of Symbolic Logic 11 (3):519-546.
    We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.
    Download  
     
    Export citation  
     
    Bookmark   5 citations