Switch to: References

Add citations

You must login to add citations.
  1. Definition in mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rebutting and undercutting in mathematics.Kenny Easwaran - 2015 - Philosophical Perspectives 29 (1):146-162.
    In my () I argued that a central component of mathematical practice is that published proofs must be “transferable” — that is, they must be such that the author's reasons for believing the conclusion are shared directly with the reader, rather than requiring the reader to essentially rely on testimony. The goal of this paper is to explain this requirement of transferability in terms of a more general norm on defeat in mathematical reasoning that I will call “convertibility”. I begin (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Robustness, Diversity of Evidence, and Probabilistic Independence.Jonah N. Schupbach - 2015 - In Uskali Mäki, Stéphanie Ruphy, Gerhard Schurz & Ioannis Votsis (eds.), Recent Developments in the Philosophy of Science. Cham: Springer. pp. 305-316.
    In robustness analysis, hypotheses are supported to the extent that a result proves robust, and a result is robust to the extent that we detect it in diverse ways. But what precise sense of diversity is at work here? In this paper, I show that the formal explications of evidential diversity most often appealed to in work on robustness – which all draw in one way or another on probabilistic independence – fail to shed light on the notion of diversity (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution.Miklós Rédei & Charlotte Werndl - 2012 - Archive for History of Exact Sciences 66 (1):71-93.
    This paper reviews some major episodes in the history of the spatial isomorphism problem of dynamical systems theory. In particular, by analysing, both systematically and in historical context, a hitherto unpublished letter written in 1941 by John von Neumann to Stanislaw Ulam, this paper clarifies von Neumann's contribution to discovering the relationship between spatial isomorphism and spectral isomorphism. The main message of the paper is that von Neumann's argument described in his letter to Ulam is the very first proof that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A new approach to the approach to equilibrium.Roman Frigg & Charlotte Werndl - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 99-114.
    Consider a gas confined to the left half of a container. Then remove the wall separating the two parts. The gas will start spreading and soon be evenly distributed over the entire available space. The gas has approached equilibrium. Why does the gas behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the system has to be ergodic for the approach to equilibrium to take place. This answer has been criticised on different grounds (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Lakatosian and Euclidean populations: a pluralist approach to conceptual change in mathematics.Matteo De Benedetto - 2023 - European Journal for Philosophy of Science 13 (3):1-25.
    Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degeneration and Entropy.Eugene Y. S. Chua - 2022 - Kriterion - Journal of Philosophy 36 (2):123-155.
    [Accepted for publication in Lakatos's Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, special issue of Kriterion: Journal of Philosophy. Edited by S. Nagler, H. Pilin, and D. Sarikaya.] Lakatos’s analysis of progress and degeneration in the Methodology of Scientific Research Programmes is well-known. Less known, however, are his thoughts on degeneration in Proofs and Refutations. I propose and motivate two new criteria for degeneration based on the discussion in Proofs and Refutations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gestalt switches in Poincaré׳s prize paper: An inspiration for, but not an instance of, chaos.Lena Christine Zuchowski - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47 (C):1-14.
    I analyse in detail the construction of asymptotic surfaces in Sections 16–19 of Poincaré, also known as the prize paper. There are two prime reasons for doing so. Firstly, this part of the prize paper contains an interesting argumentative strategy, which I call Poincaré׳s gestalt switch. Secondly, it has been claimed that the prize paper contains one of the first descriptions of chaotic motion. I will argue that the latter claim is false, although both the gestalt switches and the graphical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Formulation and Justification of Mathematical Definitions Illustrated By Deterministic Chaos.Charlotte Werndl - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 279-288.
    The general theme of this article is the actual practice of how definitions are justified and formulated in mathematics. The theoretical insights of this article are based on a case study of topological definitions of chaos. After introducing this case study, I identify the three kinds of justification which are important for topological definitions of chaos: natural-world-justification, condition-justification and redundancy-justification. To my knowledge, the latter two have not been identified before. I argue that these three kinds of justification are widespread (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are deterministic descriptions and indeterministic descriptions observationally equivalent?Charlotte Werndl - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):232-242.
    The central question of this paper is: are deterministic and indeterministic descriptions observationally equivalent in the sense that they give the same predictions? I tackle this question for measure-theoretic deterministic systems and stochastic processes, both of which are ubiquitous in science. I first show that for many measure-theoretic deterministic systems there is a stochastic process which is observationally equivalent to the deterministic system. Conversely, I show that for all stochastic processes there is a measure-theoretic deterministic system which is observationally equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Deterministic versus indeterministic descriptions: Not that different after all?Charlotte Werndl - 2009 - In Alexander Hieke & Hannes Leitgeb (eds.), Reduction, Abstraction, Analysis. Frankfurt: Ontos. pp. 63-78.
    The guiding question of this paper is: how similar are deterministic descriptions and indeterministic descriptions from a predictive viewpoint? The deterministic and indeterministic descriptions of concern in this paper are measure-theoretic deterministic systems and stochastic processes, respectively. I will explain intuitively some mathematical results which show that measure-theoretic deterministic systems and stochastic processes give more often the same predictions than one might perhaps have expected, and hence that from a predictive viewpoint these descriptions are quite similar.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Defining Climate and Climate Change.Charlotte Werndl - 2016 - British Journal for the Philosophy of Science 67 (2):337-364.
    The aim of the article is to provide a clear and thorough conceptual analysis of the main candidates for a definition of climate and climate change. Five desiderata on a definition of climate are presented: it should be empirically applicable; it should correctly classify different climates; it should not depend on our knowledge; it should be applicable to the past, present, and future; and it should be mathematically well-defined. Then five definitions are discussed: climate as distribution over time for constant (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations