Switch to: References

Add citations

You must login to add citations.
  1. Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, individual configurations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Foundation of statistical mechanics: Mechanics by itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above all those described (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those regularities, in (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (2 other versions)When does a Boltzmannian equilibrium exist?Charlotte Werndl & Roman Frigg - 2016 - In Charlotte Werndl & Roman Frigg (eds.).
    The received wisdom in statistical mechanics is that isolated systems, when left to themselves, approach equilibrium. But under what circumstances does an equilibrium state exist and an approach to equilibrium take place? In this paper we address these questions from the vantage point of the long-run fraction of time definition of Boltzmannian equilibrium that we developed in two recent papers. After a short summary of Boltzmannian statistical mechanics and our definition of equilibrium, we state an existence theorem which provides general (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • When do Gibbsian phase averages and Boltzmannian equilibrium values agree?Charlotte Werndl & Roman Frigg - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:46-69.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mind the Gap: Boltzmannian versus Gibbsian Equilibrium.Charlotte Werndl & Roman Frigg - 2017 - Philosophy of Science 84 (5):1289-1302.
    There are two main theoretical frameworks in statistical mechanics, one associated with Boltzmann and the other with Gibbs. Despite their well-known differences, there is a prevailing view that equilibrium values calculated in both frameworks coincide. We show that this is wrong. There are important cases in which the Boltzmannian and Gibbsian equilibrium concepts yield different outcomes. Furthermore, the conditions under which equilibriums exists are different for Gibbsian and Boltzmannian statistical mechanics. There are, however, special circumstances under which it is true (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • In Search of the Holy Grail: How to Reduce the Second Law of Thermodynamics.Katie Robertson - 2022 - British Journal for the Philosophy of Science 73 (4):987-1020.
    The search for the statistical mechanical underpinning of thermodynamic irreversibility has so far focussed on the spontaneous approach to equilibrium. But this is the search for the underpinning of what Brown and Uffink have dubbed the ‘minus first law’ of thermodynamics. In contrast, the second law tells us that certain interventions on equilibrium states render the initial state ‘irrecoverable’. In this article, I discuss the unusual nature of processes in thermodynamics, and the type of irreversibility that the second law embodies. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Essentially Ergodic Behaviour.Paula Reichert - 2020 - British Journal for the Philosophy of Science (online):axaa007.
    I prove a theorem on the precise connection of the time and phase-space average of the Boltzmann equilibrium showing that the behaviour of a dynamical system with a stationary measure and a dominant equilibrium state is qualitatively ergodic. Explicitly, I show that given a dynamical system with a stationary measure and a region of overwhelming phase-space measure, almost all trajectories spend almost all of their time in that region. Conversely, given that almost all trajectories spend almost all of their time (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On How to Approach the Approach to Equilibrium.Joshua Luczak - 2016 - Philosophy of Science 83 (3):393-411.
    This article highlights the limitations of typicality accounts of thermodynamic behavior so as to promote an alternative line of research: understanding and accounting for the success of the techniques and equations physicists use to model the behavior of systems that begin away from equilibrium. This article also takes steps in this promising direction. It examines a technique commonly used to model the behavior of an important kind of system: a Brownian particle that has been introduced to an isolated fluid at (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Boltzmann versus Gibbs and the Equilibrium in Statistical Mechanics.Dustin Lazarovici - 2019 - Philosophy of Science 86 (4):785-793.
    Charlotte Werndl and Roman Frigg discuss the relationship between the Boltzmannian and Gibbsian framework of statistical mechanics, addressing, in particular, the question when equilibrium values calculated in both frameworks agree. This note points out conceptual confusions that could arise from their discussion, concerning, in particular, the authors’ use of “Boltzmann equilibrium.” It also clarifies the status of the Khinchin condition for the equivalence of Boltzmannian and Gibbsian equilibrium predictions and shows that it follows, under the assumptions proposed by Werndl and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Statistical Mechanics: A Tale of Two Theories.Roman Frigg & Charlotte Werndl - 2019 - The Monist 102 (4):424-438.
    There are two theoretical approaches in statistical mechanics, one associated with Boltzmann and the other with Gibbs. The theoretical apparatus of the two approaches offer distinct descriptions of the same physical system with no obvious way to translate the concepts of one formalism into those of the other. This raises the question of the status of one approach vis-à-vis the other. We answer this question by arguing that the Boltzmannian approach is a fundamental theory while Gibbsian statistical mechanics is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Robustness, evidence, and uncertainty: an exploration of policy applications of robustness analysis.Nicolas Wüthrich - unknown
    Policy-makers face an uncertain world. One way of getting a handle on decision-making in such an environment is to rely on evidence. Despite the recent increase in post-fact figures in politics, evidence-based policymaking takes centre stage in policy-setting institutions. Often, however, policy-makers face large volumes of evidence from different sources. Robustness analysis can, prima facie, handle this evidential diversity. Roughly, a hypothesis is supported by robust evidence if the different evidential sources are in agreement. In this thesis, I strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boltzmannian Equilibrium in Stochastic Systems.Charlotte Werndl & Roman Frigg - unknown
    Equilibrium is a central concept of statistical mechanics. In previous work we introduced the notions of a Boltzmannian alpha-epsilon-equilibrium and a Boltzmannian gamma-epsilon-equilibrium. This was done in a deterministic context. We now consider systems with a stochastic micro-dynamics and transfer these notions from the deterministic to the stochastic context. We then prove stochastic equivalents of the Dominance Theorem and the Prevalence Theorem. This establishes that also in stochastic systems equilibrium macro-regions are large in requisite sense.
    Download  
     
    Export citation  
     
    Bookmark   5 citations