When does a Boltzmannian equilibrium exist?

In Charlotte Werndl & Roman Frigg (eds.) (2016)
  Copy   BIBTEX


The received wisdom in statistical mechanics is that isolated systems, when left to themselves, approach equilibrium. But under what circumstances does an equilibrium state exist and an approach to equilibrium take place? In this paper we address these questions from the vantage point of the long-run fraction of time definition of Boltzmannian equilibrium that we developed in two recent papers. After a short summary of Boltzmannian statistical mechanics and our definition of equilibrium, we state an existence theorem which provides general criteria for the existence of an equilibrium state. We first illustrate how the theorem works with a toy example, which allows us to illustrate the various elements of the theorem in a simple setting. After a look at the ergodic programme, we discuss equilibria in a number of different gas systems: the ideal gas, the dilute gas, the Kac gas, the stadium gas, the mushroom gas and the multi-mushroom gas. In the conclusion we briefly summarise the main points and highlight open questions.

Author Profiles

Charlotte Sophie Werndl
London School of Economics
Roman Frigg
London School of Economics


Added to PP

254 (#67,646)

6 months
96 (#54,044)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?