Switch to: References

Add citations

You must login to add citations.
  1. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Tempo objectivo e experiência do tempo: A fenomenologia husserliana do tempo perante a relatividade restrita de A. Einstein.Pedro Alves - 2008 - Investigaciones Fenomenológicas 6:145-180.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Representational Inadequacy of Ramsey Sentences.Arnold Koslow - 2006 - Theoria 72 (2):100-125.
    We canvas a number of past uses of Ramsey sentences which have yielded disappointing results, and then consider three very interesting recent attempts to deploy them for a Ramseyan Dialetheist theory of truth, a modal account of laws and theories, and a criterion for the existence of factual properties. We think that once attention is given to the specific kinds of theories that Ramsey had in mind, it becomes evident that their Ramsey sentences are not the best ways of presenting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Wittgenstein and finitism.Mathieu Marion - 1995 - Synthese 105 (2):141 - 176.
    In this paper, elementary but hitherto overlooked connections are established between Wittgenstein's remarks on mathematics, written during his transitional period, and free-variable finitism. After giving a brief description of theTractatus Logico-Philosophicus on quantifiers and generality, I present in the first section Wittgenstein's rejection of quantification theory and his account of general arithmetical propositions, to use modern jargon, as claims (as opposed to statements). As in Skolem's primitive recursive arithmetic and Goodstein's equational calculus, Wittgenstein represented generality by the use of free (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wittgenstein on Weyl: the law of the excluded middle and the natural numbers.Jann Paul Engler - 2023 - Synthese 201 (6):1-23.
    In one of his meetings with members of the Vienna Circle, Wittgenstein discusses Hermann Weyl’s brief conversion to intuitionism and criticizes his arguments against applying the law of the excluded middle to generalizations over the natural numbers. Like Weyl, however, Wittgenstein rejects the classical model theoretic conception of generality when it comes to infinite domains. Nonetheless, he disagrees with him about the reasons for doing so. This paper provides an account of Wittgenstein’s criticism of Weyl that is based on his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Replies.Øystein Linnebo - 2023 - Theoria 89 (3):393-406.
    Thin Objects has two overarching ambitions. The first is to clarify and defend the idea that some objects are ‘thin’, in the sense that their existence does not make a substantive demand on reality. The second is to develop a systematic and well-motivated account of permissible abstraction, thereby solving the so-called ‘bad company problem’. Here I synthesise the book by briefly commenting on what I regard as its central themes.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Solvability to Formal Decidability. Revisiting Hilbert’s Non-Ignorabimus.Andrea Reichenberger - 2018 - Journal for Humanistic Mathematics 9 (1):49–80.
    The topic of this article is Hilbert’s axiom of solvability, that is, his conviction of the solvability of every mathematical problem by means of a finite number of operations. The question of solvability is commonly identified with the decision problem. Given this identification, there is not the slightest doubt that Hilbert’s conviction was falsified by Gödel’s proof and by the negative results for the decision problem. On the other hand, Gödel’s theorems do offer a solution, albeit a negative one, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinity and a Critical View of Logic.Charles Parsons - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):1-19.
    The paper explores the view that in mathematics, in particular where the infinite is involved, the application of classical logic to statements involving the infinite cannot be taken for granted. L. E. J. Brouwer’s well-known rejection of classical logic is sketched, and the views of David Hilbert and especially Hermann Weyl, both of whom used classical logic in their mathematical practice, are explored. We inquire whether arguments for a critical view can be found that are independent of constructivist premises and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl.Paolo Mancosu & T. A. Ryckman - 2002 - Philosophia Mathematica 10 (2):130-202.
    Recently discovered correspondence from Oskar Becker to Hermann Weyl sheds new light on Weyl's engagement with Husserlian transcendental phenomenology in 1918-1927. Here the last two of these letters, dated July and August, 1926, dealing with issues in the philosophy of mathematics are presented, together with background and a detailed commentary. The letters provide an instructive context for re-assessing the connection between intuitionism and phenomenology in Weyl's foundational thought, and for understanding Weyl's term ‘symbolic construction’ as marking his own considered position (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • 26 Potential Infinity, Paradox, and the Mind of God: Historical Survey.Samuel Levey, Øystein Linnebo & Stewart Shapiro - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 531-560.
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein and Brouwer.Mathieu Marion - 2003 - Synthese 137 (1-2):103 - 127.
    In this paper, I present a summary of the philosophical relationship betweenWittgenstein and Brouwer, taking as my point of departure Brouwer's lecture onMarch 10, 1928 in Vienna. I argue that Wittgenstein having at that stage not doneserious philosophical work for years, if one is to understand the impact of thatlecture on him, it is better to compare its content with the remarks on logics andmathematics in the Tractactus. I thus show that Wittgenstein's position, in theTractactus, was already quite close to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Theological Underpinnings of the Modern Philosophy of Mathematics.Vladislav Shaposhnikov - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):147-168.
    The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.
    Download  
     
    Export citation  
     
    Bookmark  
  • Antirealism and the Roles of Truth.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Questions of Proof.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Phenomenology and the infinite in mathematics. [REVIEW]D. A. Gillies - 1980 - British Journal for the Philosophy of Science 31 (3):289-298.
    Download  
     
    Export citation  
     
    Bookmark  
  • The philosophical background of Weyl's mathematical constructivism.Richard Tieszen - 2000 - Philosophia Mathematica 8 (3):274-301.
    Weyl's inclination toward constructivism in the foundations of mathematics runs through his entire career, starting with Das Kontinuum. Why was Weyl inclined toward constructivism? I argue that Weyl's general views on foundations were shaped by a type of transcendental idealism in which it is held that mathematical knowledge must be founded on intuition. Kant and Fichte had an impact on Weyl but HusserFs transcendental idealism was even more influential. I discuss Weyl's views on vicious circularity, existence claims, meaning, the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Crisis discussions in psychology—New historical and philosophical perspectives.Thomas Sturm & Annette Mülberger - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):425-433.
    In this introductory article, we provide a historical and philosophical framework for studying crisis discussions in psychology. We first trace the various meanings of crisis talk outside and inside of the sciences. We then turn to Kuhn’s concept of crisis, which is mainly an analyst’s category referring to severe clashes between theory and data. His view has also dominated many discussions on the status of psychology: Can it be considered a “mature” science, or are we dealing here with a pre- (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The swap of integral and limit in constructive mathematics.Rudolf Taschner - 2010 - Mathematical Logic Quarterly 56 (5):533-540.
    Integration within constructive, especially intuitionistic mathematics in the sense of L. E. J. Brouwer, slightly differs from formal integration theories: Some classical results, especially Lebesgue's dominated convergence theorem, have tobe substituted by appropriate alternatives. Although there exist sophisticated, but rather laborious proposals, e.g. by E. Bishop and D. S. Bridges , the reference to partitions and the Riemann-integral, also with regard to the results obtained by R. Henstock and J. Kurzweil , seems to give a better direction. Especially, convergence theorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Brouwer, as never read by Husserl.Mark van Atten - 2003 - Synthese 137 (1-2):3-19.
    Even though Husserl and Brouwer have never discussed each other's work, ideas from Husserl have been used to justify Brouwer's intuitionistic logic. I claim that a Husserlian reading of Brouwer can also serve to justify the existence of choice sequences as objects of pure mathematics. An outline of such a reading is given, and some objections are discussed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the mathematical nature of logic, featuring P. Bernays and K. Gödel.Oran Magal - unknown
    The paper examines the interrelationship between mathematics and logic, arguing that a central characteristic of each has an essential role within the other. The first part is a reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic are based on different directions of abstraction from content, and that mathematics, at its core it is a study of formal structures. The notion of a study of structure is clarified by the examples of Hilbert’s work on the axiomatization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The irreflexivity of Brouwer's philosophy.Mark van Atten - 2002 - Axiomathes 13 (1):65-77.
    I argue that Brouwer''s general philosophy cannot accountfor itself, and, a fortiori, cannot lend justification tomathematical principles derived from it. Thus it cannot groundintuitionism, the jobBrouwer had intended it to do. The strategy is to ask whetherthat philosophy actually allows for the kind of knowledge thatsuch an account of itself would amount to.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The ontological status of the principle of the excluded middle.Daniël F. M. Strauss - 1991 - Philosophia Mathematica (1):73-90.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weyl’s ‘agens theory’ of matter and the Zurich Fichte.Norman Sieroka - 2007 - Studies in History and Philosophy of Science Part A 38 (1):84-107.
    This paper investigates Hermann Weyl’s reception of philosophical concepts stemming from the German Idealist Johann Gottlieb Fichte. In particular, Weyl’s ‘agens theory’ of matter, which he held around 1925, will be looked at. In the extant literature, the—admittedly also important—influence of Husserl on Weyl has mainly been addressed. Thus, apart from investigating some detailed Fichtean inheritances in Weyl’s concepts of causality, chance and continuity, the general difference which Weyl saw between the philosophies of Fichte and Husserl will also be discussed. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What is a Line?D. F. M. Strauss - 2014 - Axiomathes 24 (2):181-205.
    Since the discovery of incommensurability in ancient Greece, arithmeticism and geometricism constantly switched roles. After ninetieth century arithmeticism Frege eventually returned to the view that mathematics is really entirely geometry. Yet Poincaré, Brouwer, Weyl and Bernays are mathematicians opposed to the explication of the continuum purely in terms of the discrete. At the beginning of the twenty-first century ‘continuum theorists’ in France (Longo, Thom and others) believe that the continuum precedes the discrete. In addition the last 50 years witnessed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El simposio de Königsberg sobre fundamentos de la matemática en perspectiva.Oscar M. Esquisabel & Javier Legris - 2020 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 10 (2):7--15.
    This volume of Metatheoria includes translations into Spanish of the three famous papers on the schools in foundations of mathematics, logicism, intuitionism and formalism, presented at the Königsberg’s Symposium on Foundations of Mathematics in September 1930 and finally published in the journal Erkenntnis in 1931. The three papers constituted a milestone in the Philosophy of Mathematics of the last century. In this introduction to the translations, the editors of the volume outline the historical context in which the original papers were (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When series go in indefinitum, ad infinitum and in infinitum concepts of infinity in Kant’s antinomy of pure reason.Silvia De Bianchi - 2015 - Synthese 192 (8):2395-2412.
    In the section of the Antinomy of pure Reason Kant presents three notions of infinity. By investigating these concepts of infinity, this paper highlights important ‘building blocks’ of the structure of the mathematical antinomies, such as the ability of reason of producing ascending and descending series, as well as the notions of given and givable series. These structural features are discussed in order to clarify Ernst Zermelo’s reading of Kant’s antinomy, according to which the latter is deeply rooted in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Book review. [REVIEW]Norman Sieroka - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (4):724-729.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Maximen V / Maxims V.Kurt Gödel - 2023 - De Gruyter.
    Over a period of 22 years (1934-1955), the mathematician Kurt Gödel wrote down philosophical remarks, the so-called Maximen Philosophie (Max Phil). They are preserved in 15 notebooks in Gabelsberger shorthand. The first booklet contains general philosophical considerations, booklets two and three consist of Gödel's individual ethics. The following books show that Gödel developed a philosophy of science in which he places his discussions on physics, psychology, biology, mathematics, language, theology and history in the context of a metaphysics. A complete, historical-critical (...)
    Download  
     
    Export citation  
     
    Bookmark