Switch to: Citations

Add references

You must login to add references.
  1. Review of L. S. Schulman: Time's Arrows and Quantum Measurement[REVIEW]Huw Price - 1998 - British Journal for the Philosophy of Science 49 (3):522-525.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Quantum Mechanics: Myths and Facts.Nikolic Hrvoje - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Evidence for the Epistemic View of Quantum States: A Toy Theory.Robert W. Spekkens - 2007 - Physical Review A 75:032110.
    We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. Many quantum phenomena are found to have analogues within this toy theory. These include the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 1--13.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Time-Symmetric Quantum Mechanics.K. B. Wharton - 2007 - Foundations of Physics 37 (1):159-168.
    A time-symmetric formulation of nonrelativistic quantum mechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantum mechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantum mechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon measurement, thereby realigning quantum mechanics with an important (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantum Gravity.Carlo Rovelli - 2004 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • The transactional interpretation of quantum mechanics.John G. Cramer - 1986 - Reviews of Modern Physics 58 (3):647-687.
    Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Causally symmetric Bohm model.Roderick Ian Sutherland - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):782-805.
    The aim of this paper is to construct a version of Bohm’s model that also includes the existence of backwards-in-time influences in addition to the usual forwards causation. The motivation for this extension is to remove the need in the existing model for a preferred reference frame. As is well known, Bohm’s explanation for the nonlocality of Bell’s theorem necessarily involves instantaneous changes being produced at space-like separations, in conflict with the “spirit” of special relativity even though these changes are (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations