Switch to: References

Add citations

You must login to add citations.
  1. Collective Abstraction.Jon Erling Litland - 2022 - Philosophical Review 131 (4):453-497.
    This paper develops a novel theory of abstraction—what we call collective abstraction. The theory solves a notorious problem for noneliminative structuralism. The noneliminative structuralist holds that in addition to various isomorphic systems there is a pure structure that can be abstracted from each of these systems; but existing accounts of abstraction fail for nonrigid systems like the complex numbers. The problem with the existing accounts is that they attempt to define a unique abstraction operation. The theory of collective abstraction instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structuralism, indiscernibility, and physical computation.F. T. Doherty & J. Dewhurst - 2022 - Synthese 200 (3):1-26.
    Structuralism about mathematical objects and structuralist accounts of physical computation both face indeterminacy objections. For the former, the problem arises for cases such as the complex roots i and \, for which a automorphism can be defined, thus establishing the structural identity of these importantly distinct mathematical objects. In the case of the latter, the problem arises for logical duals such as AND and OR, which have invertible structural profiles :369–400, 2001). This makes their physical implementations indeterminate, in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Parts of Structures.Matteo Plebani & Michele Lubrano - 2022 - Philosophia 50 (3):1277-1285.
    We contribute to the ongoing discussion on mathematical structuralism by focusing on a question that has so far been neglected: when is a structure part of another structure? This paper is a first step towards answering the question. We will show that a certain conception of structures, abstractionism about structures, yields a natural definition of the parthood relation between structures. This answer has many interesting consequences; however, it conflicts with some standard mereological principles. We argue that the tension between abstractionism (...)
    Download  
     
    Export citation  
     
    Bookmark