Switch to: Citations

Add references

You must login to add references.
  1. The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2019 - British Journal for the Philosophy of Science 70 (4):1201-1226.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this article, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)ssays on the Theory of Numbers. [REVIEW]R. Dedekind - 1903 - Ancient Philosophy (Misc) 13:314.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Scientific Theories.Hans Halvorson - 2014 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press. pp. 585-608.
    Since the beginning of the 20th century, philosophers of science have asked, "what kind of thing is a scientific theory?" The logical positivists answered: a scientific theory is a mathematical theory, plus an empirical interpretation of that theory. Moreover, they assumed that a mathematical theory is specified by a set of axioms in a formal language. Later 20th century philosophers questioned this account, arguing instead that a scientific theory need not include a mathematical component; or that the mathematical component need (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Higher-Order Logic or Set Theory: A False Dilemma.S. Shapiro - 2012 - Philosophia Mathematica 20 (3):305-323.
    The purpose of this article is show that second-order logic, as understood through standard semantics, is intimately bound up with set theory, or some other general theory of interpretations, structures, or whatever. Contra Quine, this does not disqualify second-order logic from its role in foundational studies. To wax Quinean, why should there be a sharp border separating mathematics from logic, especially the logic of mathematics?
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The foundations of arithmetic.Gottlob Frege - 1884/1950 - Evanston, Ill.,: Northwestern University Press.
    In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry, ...
    Download  
     
    Export citation  
     
    Bookmark   427 citations  
  • Criteria of identity and structuralist ontology.Hannes Leitgib & James Ladyman - 2008 - Philosophia Mathematica 16 (3):388-396.
    In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Ontology and ideology.W. V. O. Quine - 1951 - Philosophical Studies 2 (1):11 - 15.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Structuralism and the notion of dependence.Øystein Linnebo - 2008 - Philosophical Quarterly 58 (230):59-79.
    This paper has two goals. The first goal is to show that the structuralists’ claims about dependence are more significant to their view than is generally recognized. I argue that these dependence claims play an essential role in the most interesting and plausible characterization of this brand of structuralism. The second goal is to defend a compromise view concerning the dependence relations that obtain between mathematical objects. Two extreme views have tended to dominate the debate, namely the view that all (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (1 other version)Mathematical Structuralism.Stewart Shapiro - 2010 - Philosophia Mathematica.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Mathematical structuralism.Stewart Shapiro - 1996 - Philosophia Mathematica 4 (2):81-82.
    STEWART SHAPIRO; Mathematical Structuralism, Philosophia Mathematica, Volume 4, Issue 2, 1 May 1996, Pages 81–82, https://doi.org/10.1093/philmat/4.2.81.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Semantic View, If Plausible, Is Syntactic.Hans Halvorson - 2013 - Philosophy of Science 80 (3):475-478.
    Halvorson argues that the semantic view of theories leads to absurdities. Glymour shows how to inoculate the semantic view against Halvorson's criticisms, namely by making it into a syntactic view of theories. I argue that this modified semantic-syntactic view cannot do the philosophical work that the original "language-free" semantic view was supposed to do.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Identity Problem for Realist Structuralism II: A Reply to Shapiro.Jukka Keranen - 2006 - In Fraser MacBride (ed.), Identity and modality. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Book Review: Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology. [REVIEW]John P. Burgess - 1999 - Notre Dame Journal of Formal Logic 40 (2):283-291.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Two types of abstraction for structuralism.Øystein Linnebo & Richard Pettigrew - 2014 - Philosophical Quarterly 64 (255):267-283.
    If numbers were identified with any of their standard set-theoretic realizations, then they would have various non-arithmetical properties that mathematicians are reluctant to ascribe to them. Dedekind and later structuralists conclude that we should refrain from ascribing to numbers such ‘foreign’ properties. We first rehearse why it is hard to provide an acceptable formulation of this conclusion. Then we investigate some forms of abstraction meant to purge mathematical objects of all ‘foreign’ properties. One form is inspired by Frege; the other (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Theoretical Equivalence and the Semantic View of Theories.Clark Glymour - 2013 - Philosophy of Science 80 (2):286-297.
    Halvorson argues through a series of examples and a general result due to Myers that the “semantic view” of theories has no available account of formal theoretical equivalence. De Bouvere provides criteria overlooked in Halvorson’s paper that are immune to his counterexamples and to the theorem he cites. Those criteria accord with a modest version of the semantic view that rejects some of Van Fraassen’s apparent claims while retaining the core of Patrick Suppes’s proposal. I do not endorse any version (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Essays on the Theory of Numbers.R. Dedekind - 1903 - The Monist 13:314.
    Download  
     
    Export citation  
     
    Bookmark   69 citations